In this paper, the pollination and biology of apricot in Hongfeng and New Century were studied. The results are as follows: (1) The est pollination with the red variety is early, new century's best pollinating varieties is camel yellow. (2) The flowering period of different cultivars was different, and the flowering period of Hongfeng and other varieties was 3 - 7 days later than that of Baxing water apricot and other varieties, which provided germplasm for further breeding of late flowering varieties. (3) Hongfeng, the new century and other varieties of self-flowering rate of 0 - 3.61% range, is self-incompatible varieties. (4) The pollen germination rate of different cultivars was higher than 50%, which indicated that the pollen was mature and the fertility was strong, and the reason of low percentage of self-pollination was pollen abortion, the main reason was self and so on.
Ebola virus is a potent infectious disease virus that can cause Ebola haemorrhagic fever caused by human and primate. It has high mortality and easy infectivity to form a great obstacle to the steady development of human society. The profound understanding of the virus is particularly important harm. In this paper, a number of mathematical models are established to solve this problem. The software is used to analyze and predict the propagation of Ebola virus. The residual analysis is used to test the model. Finally, the effects of various control measures on controlling the epidemic are analyzed. In order to solve the problem, we will establish the infectious disease model to dynamically describe the spread of the virus in the 'virtual orangutan population'. Considering that the latent population is analyzed in this question, we will improve the model. Join the latent group (), and the migrants are divided into self-healing () and the dead (), to establish a suitable solution to this problem model. According to the relevant data given in the title, differential equations were established. For the second question, this question involves the one-way transmission of the virus across the species, so we can improve the model, on the basis of human contact with orangutans infected groups, the establishment of a one-way model to solve this problem. On the basis of the problem one, the differential equation is established, the model is predicted and tested. In the case of question 3, the number of human susceptible groups is much higher than that of the orangutan infection group by comparing the relevant data with the increase of the cure rate to 80% after the intervention of the outside experts. Therefore, the original data of human populations from experts can be ignored. Since then the virus spreads within a single species, the differential equation can be established according to the model in question 1 and the data values in the virtual human population are predicted. For question 4, the effect of the measures such as the strict enforcement of the various epidemic control measures and the improvement of the drug effect on the control of the epidemic are analyzed by comparing the above-mentioned models with the control measures.
In the current era, electromagnetic radiation is everywhere. Every day electromagnetic radiation and static electricity caused by a variety of hazards. So, anti-electromagnetic radiation and anti-static awareness gradually enjoys popular support, more attention are gained by people on the anti-electromagnetic radiation and anti-static. This caused radiation protection and anti-static clothing industry’s rise by the day. Radiation protection and anti-static clothing will enter various households to provide a certain amount of protection to the people's health. We discuss two parts in this paper, specifically from the effects of the electromagnetic radiation and electrostatic effects which started on radiation clothing and anti-static clothing. The main contents of this paper are as follows: The first part of the definition of electromagnetic radiation and its brief introduction, while explaining the types of electromagnetic radiation and electromagnetic radiation sources in daily lives, followed by the emphasis of serious harms on electromagnetic radiation on human health It is precisely because of electromagnetic radiation on people's lives have serious threat, that makes the development of radiation protection. This follows the basic introduction of the radiation suit and the development of radiation protection clothings. The development of radiation protection suits is an established industry. Materials made of radiation protection are constantly changing, but their basic working principle has not changed. Followed by the introduction of the basic principles of radiation protection clothings, we theoretically present specific analysis and demonstration. However, the theoretical analysis and practice is often consists a certain gap, so we highlight a few actual situations on the impact of radiation protection clothings. Finally, we present a simple discussion on wide range of applications of radiation protection clothings. The thought process of second part is similar as the first part, respectively, we introduce the health hazards and the impact on people's lives of electrostatic effect and static electricity . Followed by that it is the basic principles, relevant analysis and discussion of anti-static clothing Finally, we provide the detailed explanation of the application of anti-static clothing.
This paper describes the significance, content, progress and corresponding basic theory and experimental research methods of micron/nanometer scale thermal science and engineering, which is one of the latest cutting-edge disciplines, and analyzes the effects of micron nanometer devices on the scale effect series of challenging hot issues, discussed the corresponding emergence of some new phenomena and new concepts, pointed out that the micron/nano thermal science aspects of the recent development of several types of theory and experimental technology success and shortcomings, and summed up a number for the exploration of the new ways and new directions, especially on some typical micron/nano-thermal devices and micro-scale biological heat transfer in some important scientific issues and their engineering applications were introduced.
This study examines conditions that impact PPP delivery success or failure in the roadways sector in India using Qualitative Comparative Analysis. QCA is well-suited for problems where multiple factors combine to create pathways leading to an outcome. Past investigations have compared PPP and non-PPP project delivery performance, but this study examines performance within PPPs by uncovering a set of conditions that combine to influence the success or failure road PPP project delivery in India. Based on data from 21 cases, pathways explaining project delivery success or failure were identified. Specifically, PPPs with high concessionaire equity investment and low regional industrial activity led to project delivery success. Projects with lower concessionaire equity investment and low reliance on toll revenue and with either: (a) high project technical complexity or (b) high regional industrial activity, led to project delivery failure. The pathways identified did not have coverage values that they were extremely strong. Coverage strength was hindered by lack of access to information on additional conditions that could be configurationally important. Further, certain characteristics of the Indian market limit generalization. Identification of combinations of conditions leading to PPP project delivery success or failure improves knowledge of the impacts of structure and characteristics of these complex arrangements. This study is one of the first to use fuzzy QCA to understand project delivery success/failure in road PPP projects. Moreover, this study takes into account factors specific to a sector and delivery mode to explain project delivery performance.
Using a Global Trade Analysis Project (GTAP) model, and China as the base for analytical comparison, this paper shows that there are significant economic benefits to China and the participating countries along all six Belt and Road Initiative (BRI) economic corridors. However, to maximize these benefits, the social and environmental risks need to be well managed. The analysis shows a clear sequencing in terms of priority corridors. Two corridors have minimal investments and immediate returns, two corridors have significant investments with huge returns, and two corridors have high investments with lower returns. Overall, the paper demonstrates that to ensure the sustainability of any BRI corridor development, there is a need to consider its costs and benefits from the economic, social and environmental perspectives.
Copyright © by EnPress Publisher. All rights reserved.