This study focused on the formulation and characterization of silver nanoparticles (AgNP) functionalized with d-limonene. The nanoparticles were functionalized by phase inversion and the synthesis of the nanoparticles was performed in situ; particle size was determined by laser diffraction, zeta potential and optical colloidal stability using Multiscan 20 for a period of 24 hours at 37 °C; the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the formulated material on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Klebsiella oxytoca ATCC 700324, Enterococcus casseliflavus ATCC 700327, Escherichia coli BLEE, carbapenem-resistant Pseudomona aeruginosa were determined. The nanoparticles showed colloidal stability at a d-limonene concentration of 3.93%, silver ions at 1.61 × 10−3%, non-ionic adjuvant at 24% and ascorbic acid at 5.88%; citric acid/citrate (1:1) 0.48M for a pH of 4.5 was used as a buffer system. The formulation was classified as a polydisperse system (PD = 0.0851), with a zeta potential of −11.6 mV and average particle size of 81.5 ± 0.9 nm. A particle migration velocity of −0.199 ± 0.006 mm∙h−1, a constant transmission profile and backscattering profile with variations of 10% were evidenced, which represents a stable formulation. The nanoparticles presented an MIC and an MBC of 28 μg∙mL−1 (5.6 × 10−2% d-limonene and 4.7 × 10−5% AgNP) against all tested bacteria.
The resistance of platinum filament on heating to different temperatures have been measured. Measurements showed platinum wire resistivity matching to tabulated values, and therefore can be used to obtain the temperature dependence of conductors used in bolometric measurers of radiation.The results obtained make it possible to createabsolute bolometricmeasurer of continuous power and pulse energy of laser radiation.
In casting industries, issue of spent molding sand disposal is the origin of molding sand reclamation. Among from all reclamation concepts the thermal reclamation method is better for no-bake sand system. This study focuses on the evaluation of sand quality by considering physical and chemical characteristics of molding sand, which is reclaimed by thermal reclamation method. Electric fuel and fluidization mechanism is used in thermal reclamation system. Effect of reclamation temperature, soaking period and sand quantity on % reclamability, grain size, ADV and on LOI is investigated. The average grain size, low ADV, low LOI and acceptable % reclamability of thermally reclaimed sand are studied.
Using matricant method elastic moduli of occasionally heterogeneous isotropic and anisotropic elastic media were received. Anisotropic behaviour and conditions for change in anisotropy of media associated with averaging of one-dimensional periodic structures was determined.
Four alloys based on niobium and containing about 33wt.%Cr, 0.4wt.C and, in atomic content equivalent to the carbon one, Ta, Ti, Hf or Zr, were elaborated by classical foundry under inert atmosphere. Their as-cast microstructures were characterized by X-ray diffraction, electron microscopy, energy dispersion spectrometry and while their room temperature hardness was specified by Vickers indentation. The microstructures are in the four cases composed of a dendritic Nb-based solid solution and of an interdendritic NbCr2 Laves phase. Despite the MC-former behavior of Ta, Ti, Hf and Zr usually observed in nickel or cobalt-based alloys, none of the four alloys contain MC carbides. Carbon is essentially visible as graphite flakes. These alloys are brittle at room temperature and hard to machine. Indentation shows that the Vickers hardness is very high, close to 1000HV10kg. Indentation lead to crack propagation through the niobium phase and the Laves areas. Obviously no niobium-based alloys microstructurally similar to high performance MC-strengthened nickel-based and cobalt-based can be expected. However the high temperature mechanical and chemical properties of these alloys remain to be investigated.
Copyright © by EnPress Publisher. All rights reserved.