The wide distribution of the common beech (Fagus sylvatica) in Europe reveals its great adaptation to diverse conditions of temperature and humidity. This interesting aspect explains the context of the main objective of this work: to carry out a dendroclimatic analysis of the species Fagus sylvatica in the Polaciones valley (Cantabria), an area of transition with environmental conditions from a characteristic Atlantic type to more Mediterranean, at the southern limit of its growth. The methodology developed is based on the analysis of 25 local chronologies of growth rings sampled at different altitudes along the valley, generating a reference chronology for the study area. Subsequently, the patterns of growth and response to climatic variations are estimated through the response and correlation function, and the most significant monthly variables in the annual growth of the species are obtained. Finally, these are introduced into a Geographic Information System (GIS) where they are cartographically modeled in the altitudinal gradient through multivariate analysis, taking into account the different geographic and topographic variables that influence the zonal variability of the species response. The results of the analyses and cartographic models show which variables are most determinant in the annual growth of the species and the distribution of its climatic response according to the variables considered.
Objective: To study the growth, accumulation and soil nutrient content of each overseeded species under different interharvesting intensity treatments of Eucalyptus, and to explore the best re-cultivation method suitable for mixed overseeded species after Eucalyptus interharvesting. Methods: In Guangxi state-owned Qipo forest, Eucalyptus tailorii with different planting densities (DH32-29) were mixed with Castanopsis hystrix, Mytilaria laosensis and Michelia macclurei, and four different treatments (CK, LT, MT and HT) were established for re-cultivation of Eucalyptus near-mature forests with different logging intensities, and the differences in growth conditions and soil physicochemical properties of each species were analyzed. Results: (1) As the proportion of Eucalyptus allocation decreased, the growth of Eucalyptus diameter at breast height, tree height and individual wood volume could be promoted; the growth of the three parameters of HT and MT Eucalyptus were significantly different from LT and CK. (2) The average wood volume per plant of the set species in the CK and LT treatments was Mytilaria laosensis > Michelia macclurei > Castanopsis hystrix, while in the MT and HT treatments it was Mytilaria laosensis > Castanopsis hystrix > Michelia macclurei. (3) The differences in soil aeration, total saturated water holding capacity, capillary water holding capacity, and field water holding capacity in soil layers of different depth varied. In the same soil layer, soil aeration, total porosity and capillary porosity were HT > CK > LT > MT; saturated water holding capacity and capillary water holding capacity were HT > CK > LT > MT, while field water holding capacity was CK > HT > LT > MT. (4) Organic matter, pH, total nitrogen, total phosphorus, total potassium, fast-acting nitrogen, fast-acting phosphorus, and fast-acting potassium changed with varying soil depth in each treatment.
This work shows the results of the biosynthesis of silver nanoparticles using the microalga Chlorella sp, using growth media with different concentrations of glycerol, between 5%–20%, and different light and temperature conditions. The synthesis of nanoparticles was studied using supernatants and pellets from autotrophic, heterotrophic and mixotrophic cultures of the microalga. The presence of nanoparticles was verified by ultraviolet-visible spectroscopy and the samples showing the highest concentration of nanoparticles were characterized by scanning electron microscopy. The mixotrophic growth conditions favored the excretion of exopolymers that enhanced the reduction of silver and thus the formation of nanoparticles. The nanoparticles obtained presented predominantly ellipsoidal shape with dimensions of 108 nm × 156 nm and 87 nm × 123 nm for the reductions carried out with the supernatants of the mixotrophic cultures with 5% and 10% glycerol, respectively.
Land suitability analysis using geographic information systems (GIS) is one of the most widely used method today. In this type of studies, GIS and geo-spatial statistical tools are used to evaluate land units and present the results in suitability maps. The present work aims to characterize the suitability of soils in the province of Catamarca for pecan nut production according to the variables: rockiness, salinity, risk of water-logging, depth, texture and drainage described in the Soil Map of Argentina at a scale of 1:500,000 published by the National Institute of Agricultural Technology. A classification of the suitability of the soil cartographic units was made according to crop requirements, applying the methodology proposed by FAO. The standardization of variables made by omega score and the calculation of the spatial classification score were carried out as a result of the synthesis of the spatial distribution of soil suitability. The applied methodology allowed obtaining the soil suitability map resulting in a total of 60,662 km2 suitable for pecan nut production, which accounts for 59.8% of the total area of the province.
The characteristics of agricultural products are influenced by the ecosystem, from the perspective of biotic and abiotic factors, which produce in the plant physiological responses and in turn in the fruit unique physicochemical properties, which are the basis for designations of origin and strategies to add value to the product in the current market. In the present work, ten cocoa materials (Theobroma cacao L.) were selected for their outstanding productivity (FSV41, FLE3, FEAR5, FSA12, FEC2, SCC23, SCC80, SCC55, ICS95 and CCN51), which were established in the departments of Santander (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.) and Huila (931 m a.s.l.). These were established in the departments of Santander (931 m a.s.l.), Huila (885 m a.s.l.) and Arauca (204 m a.s.l.), the main cocoa-producing areas in Colombia. For the evaluation of the physical characteristics of the collected materials, 21 quantitative descriptors were used to determine the physical variability of the fruit according to clone and place of collection. The data collected were analyzed by means of Pearson’s correlation matrix and principal component analysis, it was possible to identify those descriptors that contribute most to the variability among materials (ear index, diameter length ratio, seed weight and diameter, and fruit weight and length). In addition, it was possible to verify the effect of the place of harvest on the physical characteristics of the materials, high-lighting the importance of the adaptation study prior to the planting of the cocoa material, with the objective of guaranteeing a premium, productive and quality cocoa crop for the industry, which is competitive in the market.
Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
Copyright © by EnPress Publisher. All rights reserved.