In today’s manufacturing sector, high-quality materials that satisfy customers’ needs at a reduced cost are drawing attention in the global market. Also, as new applications are emerging, high-performance biocomposite products that complement them are required. The production of such high-performance materials requires suitable optimization techniques in the formulation/process design, not simply mixing natural fibre/filler, additives, and plastics, and characterization of the resulting biocomposites. However, a comprehensive review of the optimization strategies in biocomposite production intended for infrastructural applications is lacking. This study, therefore, presents a detailed discussion of the various optimization approaches, their strengths, and weaknesses in the formulation/process parameters of biocomposite manufacturing. The report explores the recent progress in optimization techniques in biocomposite material production to provide baseline information to researchers and industrialists in this field. Therefore, this review consolidates prior studies to explore new areas.
Agriculture is an industry that plays an essential role in economic development towards eliminating poverty issues, but foreign direct investment (FDI) inflows to this sector remain modest in Vietnam. This study analyzed the determinants of foreign direct investment in the agricultural sector into the Southern Key Economic Zone (KEZ) of Vietnam, which is considered the foreign direct investment magnet of Vietnam, but its FDI inflows into the agricultural sector have been consistently low, and has shown a downward trend in recent years. The study was based on a sample of 129 foreign investors of a total of 164 multinational enterprises (MNEs) in the agricultural sector, including representatives of the Board of Directors and representatives at the department level. The Partial Least Squares Structural Equation modeling (PLS-SEM) approach was used to test the hypotheses. Findings indicated that FDI attraction policies have the strongest impact on FDI inflows. This was followed by infrastructure, regional agriculture policies, public service quality, natural conditions, and human resources. This study suggests policy recommendations to improve foreign direct investment inflows into the agricultural sector of the Southern Key Economic Zone (KEZ) of Vietnam.
Ancient Minipe Anicut, Sri Lanka is world-famous for its engineering excellence. Due to its importance, conserving the ancient anicut, another anicut was constructed downstream in the 20th century. Nevertheless, the water diverted from the ancient anicut to the Minipe Left Bank (LB) Canal was kept as it was due to inherited agricultural importance. This research focuses on studying the contributions made by the adjacent catchment along the Minipe LB Canal. There are several level crossings along the Minipe Left Bank Canal from which the runoff of the local catchment flow into the Minipe LB Canal. Hydrologic Modeling System (HEC-HMS) is used to obtain the yield from each catchment into the Canal, which was compared with the annual diversions from Minipe anicut. The total yield from each stream has been compared with the annual diversion of the Minipe LB Canal from 2014 to 2020. The results obtained from this study reveal that there is sufficient water available for water augmentation in the basin, with an estimated annual average cumulative yield from the catchment of 453.6 MCM. This cumulative yield is 1.7 times the annual average diversion from the Mahaweli River, which is 271.9 MCM. With the findings, it is concluded that there is a potential to augment water from the catchment to address pertaining water shortages conveyance in the command area.
The present study demonstrates the effect of direct solar drying (DSD) and hot air drying (HAD) on the quality attributes of Fuji apple slices. DSD samples took a longer time (150–180 min) to dry and simultaneously reached higher equilibrium moisture content at the end of rehydration than HAD samples. DSD samples have higher rehydration ability, dry matter holding capacity, and water absorption capacity than HAD samples. Among several empirical models, the Weibull model is the best fit with higher R2 (0.9977), lower root mean square (0.0029), and chi-square error (0.0031) for describing the rehydration kinetics. Rehydrated HAD samples showed better color characteristics than DSD in terms of overall color change, chroma, and hue angle values. Whereas the hardness and chewiness of rehydrated DSD samples were better than HAD samples because of higher dry matter holding capacity in DSD. Apart from color retention, the DSD samples showed better rehydration capacity and a good texture upon rehydration than HAD slices.
Cucumber (Cucumis sativus L.) is a tropical vegetable and a source of vitamins such as K, C, and B. It is commonly grown and sold for daily consumption, but picking the right fruit size is more profitable. Therefore, a method for estimating the fruit weight is highly recommended. This paper aimed to determine the dimensions of cucumber fruit based on its usual harvesting size and to establish a model to show the relationship between fruit weight, fruit length, and fruit diameter. Cucumber was planted in the experimental field belonging to the Faculty of Agricultural Biosystems Engineering, Royal University of Agriculture, Phnom Penh, Cambodia, from January to June 2022. In the study, 48 market-size fruits were randomly selected from the plots to measure their weight, length, and diameter. The result shows that fruit length and fruit diameter had a positive relationship (P < 0.001; R = 0.70). Fruit weight was 3.38 fruit length × fruit diameter (P <0.001; R = 0.95). Nevertheless, L/D ratio negatively affected fruit weight, when it exceeded 3:1. Fruit weight was greater than 100 g when fruit diameter was over 4 cm and fruit length was over 10 cm. Therefore, when picking cucumber fruits, one must consider fruit length and diameter to be profitable. Further studies will focus on measuring cucumber fruit already available on the market to understand more about actual consumer preferences.
The idea of a smart city has evolved in recent years from limiting the city’s physical growth to a comprehensive idea that includes physical, social, information, and knowledge infrastructure. As of right now, many studies indicate the potential advantages of smart cities in the fields of education, transportation, and entertainment to achieve more sustainability, efficiency, optimization, collaboration, and creativity. So, it is necessary to survey some technical knowledge and technology to establish the smart city and digitize its services. Traffic and transportation management, together with other subsystems, is one of the key components of creating a smart city. We specify this research by exploring digital twin (DT) technologies and 3D model information in the context of traffic management as well as the need to acquire them in the modern world. Despite the abundance of research in this field, the majority of them concentrate on the technical aspects of its design in diverse sectors. More details are required on the application of DTs in the creation of intelligent transportation systems. Results from the literature indicate that implementing the Internet of Things (IoT) to the scope of traffic addresses the traffic management issues in densely populated cities and somewhat affects the air pollution reduction caused by transportation systems. Leading countries are moving towards integrated systems and platforms using Building Information Modelling (BIM), IoT, and Spatial Data Infrastructure (SDI) to make cities smarter. There has been limited research on the application of digital twin technology in traffic control. One reason for this could be the complexity of the traffic system, which involves multiple variables and interactions between different components. Developing an accurate digital twin model for traffic control would require a significant amount of data collection and analysis, as well as advanced modeling techniques to account for the dynamic nature of traffic flow. We explore the requirements for the implementation of the digital twin in the traffic control industry and a proper architecture based on 6 main layers is investigated for the deployment of this system. In addition, an emphasis on the particular function of DT in simulating high traffic flow, keeping track of accidents, and choosing the optimal path for vehicles has been reviewed. Furthermore, incorporating user-generated content and volunteered geographic information (VGI), considering the idea of the human as a sensor, together with IoT can be a future direction to provide a more accurate and up-to-date representation of the physical environment, especially for traffic control, according to the literature review. The results show there are some limitations in digital twins for traffic control. The current digital twins are only a 3D representation of the real world. The difficulty of synchronizing real and virtual world information is another challenge. Eventually, in order to employ this technology as effectively as feasible in urban management, the researchers must address these drawbacks.
Copyright © by EnPress Publisher. All rights reserved.