Introduction: New energy vehicles (NEVs) refer to automobiles powered by alternative energy sources to reduce reliance on fossil fuels and mitigate environmental impacts. They represent a sustainable transportation solution, aligning with global efforts to promote energy efficiency in the automotive sector. Aim: The purpose of this research is to investigate the influence of social demand on the business model of NEVs. Through a comprehensive analysis of consumer preferences and market dynamics, the research aims to identify strategies for driving the sustainable growth of the NEV industry in respond to societal demands. Research methodology: We conduct a questionnaire survey on 2415 individuals and evaluated that questionnaire data by multifactor analysis of variance to examine individual consumer characteristics. We employed NOVA to evaluate the differences in market penetration factors. Additionally, a regression analysis model is utilized to examine accessibility element’s effects on the consumer’s intensions to buy, addressing categorical and ordered data requirements effectively. Research findings: This research demonstrates that middle-aged and adolescent demographics show the highest willingness to purchase NEV’s, particularly emphasizing technological advancements. Consumer preferences vary based on focus like NEV type, model and brand, necessitating tailored marketing strategies. Conclusion: Improving perception levels and addressing charging convenience and innovative features are vital for enhancing market penetration and sustainable business growth in the NEV industry.
The global agreement on environmentally friendly policies puts pressure on businesses to implement good practices to increase legitimacy in a competitive environment. This research aims to examine business dynamic capabilities and value creation processes through the concept of green dynamic marketing capabilities. This concept addresses the ability of businesses to absorb, manage information and accumulate new knowledge that fuels innovative endeavors. The dynamic capability view and customer value theory are integrated to theoretically explain the value creation process of market-orientated innovative products. A total of 58 global companies in Clean200 were sampled. A quantitative approach was conducted to measure the effect of organizational learning (environment management team, environment management training, environment supply chain management) on green innovation (environmental innovation score, eco design product). The results showed that the contribution of Model-1 (0.473 or 47.3%) explained the effect of organizational learning on environmental innovation score, respectively on the variables of environment management team (2.859/0.005), environment management training (−2.971/0.003), and environment supply chain management (7.786/0.000). The contribution of Model-2 (0.448/44.8%) explains the effect of organizational learning on eco-design product, respectively on the variables of environment management team (4.280/0.000), environment management training (−6.401/0.000), and environment supply chain management (7.910/0.000). Model-3 tested the structural association variables in organizational learning and green innovation. A significant influence can be seen with a probability value smaller than 0.05. This research shows that the concept of green dynamic marketing capabilities can be used to explain the ability of businesses in response to the pressure of green global norms through the development of organizational learning towards creation of green innovation product that has impact on market performance. The implication of this research is the creation of new mindset in which green global norms challenge becomes an opportunity for businesses to improve competitiveness.
This paper investigates the elements affecting dividend yield in developing Southeast Asian countries—more specifically, Thailand, Malaysia, and Singapore. Examined here are the roles of financial information including debt to equity ratio, free cashflows, property, plant, and equipment (PPE) and total sales with controlling factors of size, institutional ownership, and firm age using both short-run and long-run analytical frameworks including the Error Correction Model and Engle and Granger’s approach. The results reveal different trends in the three nations. Higher debt and free cashflows lower dividend yield in Thailand; institutional shareholders benefit from maintaining greater dividend payouts. Aging companies in Malaysia are more likely to pay more dividends while rising revenues are linked to smaller short-term payouts. Leveraged and asset-heavy companies are more likely to keep paying dividends in Singapore. These discoveries have important ramifications for investors and business management trying to maximize dividend policies and improve shareholder value in developing economies.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
Using the Intercultural Competence and Inclusion in Education Scale (ICIES), this study examines variations in intercultural competence and inclusion between mainstream and multiethnic high schools. The sample consisted of 384 high school students, aged 17 to 18, from both rural and urban areas in Western Romania, enrolled in grades 11 and 12. The ICIES demonstrated strong reliability, with a Cronbach’s alpha of 0.721. Exploratory factor analysis revealed three distinct dimensions: Intercultural opportunities and activities, Comfort in diverse settings, and Cultural reflection and values. Independent samples t-tests identified significant differences between mainstream and multiethnic schools across several items, with students in multiethnic schools reporting higher levels of intercultural competence and inclusion. These findings highlight the critical role of multicultural educational settings in fostering students’ cultural awareness and inclusive attitudes. This study provides actionable insights for enhancing multicultural education practices and policies, including teacher training programs, inclusive curricula, and extracurricular initiatives that promote intercultural engagement and reduce intergroup biases.
Copyright © by EnPress Publisher. All rights reserved.