The research explores academia and industry experts’ viewpoints regarding the innovative progression of Virtual Reality (VR)-based safety tools customized for technical and vocational education training (TVET) within commercial kitchen contexts. Developing a VR-based safety tools holistic framework is crucial in identifying constructs to mitigate the risks prevalent in commercial kitchens, encompassing physical, chemical, biological, ergonomic, and psychosocial hazards workers encounter. Introducing VR-based safety training represents a proactive strategy to bolster education and training standards, especially given the historically limited attention directed toward workers’ physical and mental well-being in this sector. This study pursues a primary objective: validating a framework for VR-based kitchen safety within TVET’s hospitality programs. In addition to on-site observations, the research conducted semi-structured interviews with 16 participants, including safety training coordinators, food service coordinators, and IT experts. Participants supplemented qualitative insights by completing a 7-Likert scale survey. Utilizing the Fuzzy Delphi technique, seven constructs were delineated. The validation process underscored three pivotal constructs essential for the VR safety framework’s development: VR kitchen design, interactive applications, and hazard identification. These findings significantly affect the hospitality industry’s safety standards and training methodologies within commercial kitchen environments.
The COVID-19 epidemic has given rise to a new situation that requires the qualification and training of teachers to operate in educational crises. Amidst the pandemic, online training has emerged as the predominant approach for delivering teacher training. The COVID-19 pandemic has created potential opportunities and challenges for online training, which may have a long-lasting impact on online training procedures in the post-pandemic era. This study aims to determine the primary potential and constraints of online training as seen by instructors. The Technology Acceptance Model (TAM) identified online training opportunities and challenges by examining the to-be-applied behavioral intention variables that influence trainees. These variables include individual, system, social, and organizational factors. The study has applied the Phenomenological technique to address the research issues, using the Semi-structured interview tool to get a comprehensive knowledge of the online training phenomena amongst the pandemic. A total of seven participants were selected from a list of general education teachers at the Central Education Office of the Education Department in Bisha Governorate. These people were deliberately selected because of their high frequency of completing training sessions throughout the epidemic. A series of interviews was conducted with these participants. The findings indicated that the primary prospects included both equal opportunities and digital culture within the individual factors, enrollment in training programs and variation in training programs across organizational characteristics, the use of digital material and electronic archiving within the system variables, engaging in the exchange of personal experiences, providing constructive criticism, and fostering favorable communication within the realm of social factors. However, the primary obstacles included deficiencies in digital competencies, compatibility of trainees’ attributes, and dearth of desire as per individual factors, the temporal arrangement of training programs, as well as the lack of prior preparation and preparedness within the realm of organizational factors. Other challenges included the absence of trainer assessment, limited diversity of training exercises, and technological obstacles within the system factors, and ultimately the absence of engagement with the instructor, and lack of engagement with peers are within the social variable.
Managerial coaching in training programs is an important management style that fosters effective communication between immediate supervisors and employees in sustainable organizations. This study assesses the relationship between managerial coaching in training programmes, green motivation and employee green behaviour. A questionnaire was used to collect data from employees across various positions in five public organisations in Malaysia. SmartPLS software was employed to evaluate the measurement model, structural model and test research hypotheses. The SmartPLS path model analysis results reveal that the influence of managerial coaching in training programmes on employee green behaviour is indirectly affected by green motivation. The study’s findings suggest that consistent implementation of managerial coaching in training programmes by immediate supervisors managing training activities can instigate green motivation in employees, subsequently motivating them to enhance their green behaviour. These findings provide valuable insights for practitioners, helping them understand the nuances of green motivation in training programmes and develop strategic action plans to enhance managerial coaching in training programmes. It, in turn, contributes to achieving and sustaining organisational goals and strategies in the era of globalisation and the knowledge-based economy.
The aim of this paper is to introduce a research project dedicated to identifying gaps in green skills by using the labor market intelligence. Labor Market Intelligence (LMI). The method is primarily descriptive and conceptual, as the authors of this paper intend to develop a theoretical background and justify the planned research using Natural Language Processing (NLP) techniques. This research highlights the role of LMI as a tool for analysis of the green skills gaps and related imbalances. Due to the growing demand for eco-friendly solutions, there arises a need for the identification of green skills. As societies shift towards eco-friendly economic models, changes lead to emerging skill gaps. This study provides an alternative approach for identification of these gaps based on analysis of online job vacancies and online profiles of job seekers. These gaps are contextualized within roles that businesses find difficult to fill due to a lack of requisite green skills. The idea of skill intelligence is to blend various sources of information in order to overcome the information gap related to the identification of supply side factors, demand side factors and their interactions. The outcomes emphasize the urgency of policy interventions, especially in anticipating roles emerging from the green transition, necessitating educational reforms. As the green movement redefines the economy, proactive strategies to bridge green skill gaps are essential. This research offers a blueprint for policymakers and educators to bolster the workforce in readiness for a sustainable future. This article proposes a solution to the quantitative and qualitative mismatches in the green labor market.
Objective/Aim: In the context of a constantly changing legislative environment and the necessity for professionals to develop their skills, the research focuses on identifying effective methods and tools that facilitate efficient learning and professional development in the field of labour law. This study aimed to propose a pedagogical technology for the preparation and training of specialists in the field of labour law and to assess the effectiveness of the training based on the specified technology. Method: The study involved 124 participants, with 63 in the experimental group and 61 in the control group. Statistical analysis was performed using Microsoft Excel. The student’s t-test indicated significant improvements in the experimental group’s training effectiveness, confirming the proposed pedagogical technology’s efficacy. Results: Consequently, implementing training and education technology for specialists in the labour law field was proposed to enhance the indicators. The criteria for the preparation of specialists in the field of labour law were delineated, including knowledge of labour legislation, consulting and support skills, analytical skills, communication skills, and continuous learning. According to the criteria above, levels of preparation for specialists in the field of labour law were established, namely high, medium, and essential. The proposed training and education technology for specialists in the field of labour encompasses the following tools: The utilisation of online platforms and educational resources, virtual classes and simulations, the incorporation of multimedia materials, the integration of adaptive learning technologies, the implementation of project- and problem-oriented teaching methodologies, the incorporation of interactive methodologies, the incorporation of cloud technologies and mobile applications, and the provision of assessment and feedback. Conclusion: The proposed pedagogical technology effectively enhances the training and education of labour law specialists. The experimental group’s significant improvement in learning outcomes confirms the technology’s efficacy. Implication: The findings of this research hold significant social implications. Improved training and education of labour law specialists leads to a more competent and effective legal workforce. This, in turn, ensures better protection of workers’ rights and fairer employer-employee relations, contributing to overall social stability.
In this study, we utilized a convolutional neural network (CNN) trained on microscopic images encompassing the SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum” (causing of malaria in humans), the bacterium “vibrio cholerae” (which produces the cholera disease) and non-infected samples (healthy persons) to effectively classify and predict epidemics. The findings showed promising results in both classification and prediction tasks. We quantitatively compared the obtained results by using CNN with those attained employing the support vector machine. Notably, the accuracy in prediction reached 97.5% when using convolutional neural network algorithms.
Copyright © by EnPress Publisher. All rights reserved.