The main objective of this article is to analyze the relationship between increases in freight costs and inflation in the markets due to the increases reflected in the prices of the products in some economies in destination ports such as the United States, Europe, Japan, South Africa, the United Arab Emirates, New Zealand and South Korea. We use fractionally integrated methods and Granger causality test to calculate the correlation between these indicators. The results indicate that, after a significant drop in inflation in 2020, probably due to the confinement caused by the pandemic, the increases observed in inflation and freight costs are expected to be transitory given their stationary behavior. We also find a close correlation between both indicators in Europe, the United States and South Africa.
The proportion of national logistics costs to Gross Domestic Product (NLC/GDP) serve as a valuable indicator for estimating a country’s overall macro-level logistics costs. In some developing nations, policies aimed at reducing the NLC/GDP ratio have been elevated to the national agenda. Nevertheless, there is a paucity of research examining the variables that can determine this ratio. The purpose of this paper is to offer a scientific approach for investigating the primary determinants of the NLC/GDP and to advice policy for the reduction of macro-level logistics costs. This paper presents a systematic framework for identifying the essential criteria for lowering the NLC/GDP score and employs co-integration analysis and error correction models to evaluate the impact of industrial structure, logistics commodity value, and logistics supply scale on NLC/GDP using time series data from 1991 to 2022 in China. The findings suggest that the industrial structure is the primary factor influencing logistics demand and a significant determinant of the value of NLC/GDP. Whether assessing long-term or short-term effects, the industrial structure has a substantial impact on NLC/GDP compared to logistics supply scale and logistics commodity value. The research offers two policy implications: firstly, the goals of reducing NLC/GDP and boosting the logistics industry’s GDP are inherently incompatible; it is not feasible to simultaneously enhance the logistics industry’s GDP and decrease the macro logistics cost. Secondly, if China aims to lower its macro-level logistics costs, it must make corresponding adjustments to its industrial structure.
The rapid advancement of information and communication technology has greatly facilitated access to information across various sectors, including healthcare services. This digital transformation demands enhanced knowledge and skills among healthcare providers, particularly in comprehensive midwifery care. However, midwives in rural areas face numerous challenges such as limited resources, cultural factors, knowledge disparities, geographic conditions, and technological adoption. This research aims to evaluate the impact of AI utilization on midwives’ knowledge and behavior to optimize the implementation of healthcare services in accordance with Delima Midwife Service standards in rural settings. The analysis encompasses competencies, characteristics, information systems, learning processes, and health examinations conducted by midwives in adopting AI. The research methodology employs a cross-sectional approach involving 413 rural midwives selected proportionally. Results from Partial Least Squares Structural Equation Modeling indicate that all reflective evaluation variables meet the required criteria. Fornell-Larcker criterion demonstrates that the square root of AVE is greater than other variables. The primary findings reveal that information systems (0.029) and midwives’ competencies (0.033) significantly influence AI utilization. Furthermore, midwives’ competencies (0.002), characteristics (0.031), and AI utilization (0.011) also significantly impact midwives’ knowledge and behavior. Midwives’ characteristics also significantly affect their competencies (0.000), while midwives’ learning influences health examinations (0.000). Midwives’ knowledge and behavior affect the transformation of healthcare services in rural midwifery (0.022). The model fit results in a value of 0.097, empirically supporting the explanation of relationships among variables in the model and meeting the established linearity test.
This study aimed to examine the impact of digital leadership among school principals and evaluate the mediating effect of Professional Learning Communities (PLCs) on enhancing teachers’ innovation skills for sustainable technology integration, both in traditional classroom settings and e-learning environments. Employing a quantitative approach with a regression design model, Structural Equation Modelling (SEM) and Partial Least Squares (PLS-SEM) were utilized in this research. A total of 257 teachers from 7 excellent senior high schools in Makassar city participated in the study, responding to the questionnaires administered. The study findings indicate that while principal digital leadership does not directly influence teachers’ innovation skills in technology integration, it directly impacts Professional Learning Communities (PLCs). Moreover, PLCs themselves have a significant influence on teachers’ innovation skills in technology integration. The structural model presented in this study illustrates a noteworthy impact of principal digital leadership on teachers’ innovation skills for technology integration through Professional Learning Communities (PLCs), with a coefficient value of 47.4%. Principal digital leadership is crucial in enhancing teachers’ innovation skills for sustainable technology integration, primarily by leveraging Professional Learning Communities (PLCs). As a result, principals must prioritize the creation of supportive learning environments and implement programs to foster teachers’ proficiency for sustainable technology integration. Additionally, teachers are encouraged to concentrate on communication, collaboration, and relationship-building with colleagues to exchange insights, address challenges, and devise solutions for integrating technology, thereby contributing to sustained school improvement efforts. Finally, this research provides insights for school leaders, policymakers, and educators, emphasizing the need to leverage PLCs to enhance teaching practices and student outcomes, particularly in sustainable technology integration.
Introduction: In Central Europe, in Hungary, the state guarantees access to health care and basic health services partly through the Semmelweis Plan adopted in 2011. The primary objectives of the Semmelweis Plan include the optimisation and transformation of the health care system, starting with the integration of hospitals and the state control of previously municipally owned hospitals. The transformation of the health care system can have an impact on health services and thus on meeting the needs of the population. In addition to reducing health inequalities and costs, the relevant benefits include improving patients’ chances of recovery and increasing patient safety. The speciality under study is decubitus care. Our hypothesis is that integration will improve the chances of recovery for decubitus patients through access to smart dressings to promote patient safety. Objective: to investigate and demonstrate the effectiveness of integration in improving the chances of recovery for decubitus ulcer patients. Material and methods: The research compared two time periods in the municipality of Kalocsa, Bács-Kiskun County, Southern Hungary. We collected the number of decubitus patients arriving and leaving the hospital from the nursing records and compared the pre-integration period when decubitus patients were provided with conventional dressings (01.01.2006–2012.12.31) and the post-integration period, which entailed the introduction of smart dressings in decubitus care (01.01.2013–2012.12.31). The target population of the study was men and women aged 0–99 years who had developed some degree of decubitus. The sample size of the study was 4456. Independent samples t-test, Chow test and linear trend statistics were used to evaluate the results. Based on the empirical evidence, a SWOT analysis was conducted to further examine the effectiveness of integration. Results: The independent samples t-test model used was significant (for Phase I: t (166) = −16.872, p < 0.001; for Phase II: t (166) = −19.928, p < 0.001; for Phase III: t (166) = −19.928, p < 0.001; for Phase III: t (166) = −16.872, p < 0.001). For stage III: t (166) = −10.078, p < 0.001; for stage IV: t (166) = −10.078, p < 0.001; for stage III: t (166) = −10.078, p < 0.001). for stage III: t (166) = −14.066, p < 0.001). For the Chow test, the p-values were highly significant, indicating a structural break. Although the explanatory power of the regression models was variable (R-squared values ranged from 0.007 to 0.617), they generally supported the change in patient dynamics after integration. Both statistical analyses and SWOT analysis supported our hypothesis and showed that integration through access to smart dressings improves patients’ chances of recovery. Conclusions: Although only one segment of the evidence on the effectiveness of hospital integration was examined in this study, integration in the study area had a positive impact on the effective care of patients with decubitus ulcers, reduced inequalities in care and supported patient safety. In the context of the results obtained, these trends may reflect different systemic changes in patient management strategies in addition to efficient allocation of resources and quality of care.
The impact of crude oil price fluctuations on the real effective exchange rate (REER) has been widely debated, but specific evidence, particularly for developing countries in Southeast Asia, is scarce and inconclusive. This issue, especially concerning both short- and long-term relationships, remains inadequately addressed, affecting these countries for risk management related to oil price fluctuations. This study aims to fill this gap by examining these relationships in Thailand context to provide more evidence on how the REER in Southeast Asia responds to changes in crude oil prices. Monthly data of crude oil prices in Dubai market and the Thai baht REER from 2000 to 2019 were employed. Johansen co-integration test and Vector Error Correction Model (VECM) were used for analyzing long-term and short-term relationships, respectively. The results indicate a significant negative long-term relationship between crude oil prices and the REER, with a 0.31% reduction in the REER for every 1% increase in the real price of oil. However, in the short term, VECM analysis reveals significant movements in the REER in response to external shocks. On average from 2000–2019, the significant fluctuations in the REER are quickly alleviated and adjusted to its long-run equilibrium, typically by 2% in the following month following external shocks such as crude oil price fluctuations. Given these findings, which highlight the long-term relationship between the REER and crude oil prices and its short-term adjustment, it is suggested that when there is a shock from the crude oil prices, the government can strengthen short-term oil price controls or monetary subsidies to mitigate the extensive repercussions of energy market fluctuations, as such interventions would have a lesser impact on the long-term equilibrium of the REER.
Copyright © by EnPress Publisher. All rights reserved.