The most crucial factor in producing papaya seedlings successfully is seed germination. The purpose of this study was to investigate the influence of seed priming with growing media on seed germination and seedling growth of papaya from October to December 2022. The experimental treatments included three seed priming treatments: T0 = control (no seed priming treatments), T1 = GA3 (100 ppm), and T2 = KNO3 (1%), and four growing media, viz., M1 = soil + vermicompost (1:1), M2 = soil + cowdung (1:1), M3 = soil + cocopeat + vermicompost (1:1:1), and M4 = soil + cocopeat + cowdung (1:1:1). The treatments showed a significant effect on different parameters such as germination percentage, days to germination, survival percentage, chlorophyll content, seed vigor index, shoot, and root length. GA3 treated seedlings performed better than non-GA3-treated seedlings. Among the growing media, M3 showed the best for seed germination and other growth attributes compared to other growing media. In terms of interaction effects, T1M3 showed the highest performance for germination percentage (84.33%), survival percentage (91.0%), and chlorophyll content (44.26%). T1M3 also showed the highest seed vigor index, shoot and root growth, and plant biomass. As a result, the combination of GA3 and growing media containing soil + cocopeat + vermicompost was shown to be the most favorable for papaya seed germination and seedling growth.
The purpose of this work is to present the model of a Parabolic Trough Solar Collector (PTC) using the Finite Element Method to predict the thermal behavior of the working fluid along the collector receiver tube. The thermal efficiency is estimated based on the governing equations involved in the heat transfer processes. To validate the model results, a thermal simulation of the fluid was performed using Solidworks software. The maximum error obtained from the comparison of the modeling with the simulation was 7.6% at a flow rate of 1 L/min. According to the results obtained from the statistical errors, the method can effectively predict the fluid temperature at high flow rates. The developed model can be useful as a design tool, in the optimization of the time spent in the simulations generated by the software and in the minimization of the manufacturing costs related to Parabolic Trough Solar Collectors.
Chinese municipalities have developed a large stock of capital assets during a period of rapid growth and urbanization, but have yet to modernize asset management practices. Cities face challenges such as premature decline of fixed assets and spiking liabilities related to operating and maintaining assets. This paper evaluates the asset management practices in three selected small cities and towns in China, using a benchmarking assessment tool followed by an in-depth field assessment. The paper finds that overall performance is below half the international benchmark for good practice in all three cities. Management practices are considerably more advanced for land than for buildings and infrastructure. Key deficiencies in data availability and reporting, governance, capacity, and financial management indicate increased risks for local government finance and the delivery of public services. For small cities and towns where public revenues are often uncertain and limited, urban public services will be at risk of deterioration unless good asset management practices are put in place. The paper recommends strategic actions for upper and lower levels of government, to advance local asset management practices and facilitate the reform agenda.
Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10⁻2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm⁻1 and 1632 cm⁻1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag’s optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
This study aims to investigate the impact of dance training on the mental health of college students. Utilizing experimental research methods, we established an experimental group and a control group to compare changes in mental health dimensions—including anxiety, depression, self-esteem, and social skills—between the two groups before and after 12 weeks of dance training. The findings indicate that dance training significantly reduces levels of anxiety and depression, while also improving self-esteem and social skills, thereby enhancing social adaptability. These results provide empirical support for the use of dance as an intervention for mental health and offer new insights for mental health education in colleges and universities.
The semi-arid is a climate characterized by precipitation that is. insufficient to maintain crops and where evaporation often exceeds rainfall. Vegetation is one of the most sensitive indicators of environmental changes understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilization of biodiversity. In this study. our focus was on examining the vegetation diversity in the semi-arid region of Tebessa. which falls within the Eastern Saharan Atlas domain in North Africa’s semi-arid zone. Plants were sampled at 15 sites distributed across the study area. The quadrat method was used to conduct floral surveys. The sampling area of each sample was 100 square meters 10 m × 10 m (quadrat). Each quadrat was measured for species richness (number of species). abundance (number of individuals). and Richness generic (plant cover). Based on the floristic research. 48 species were found. classified into 21 families. with Asteraceae accounting for 34.69% of the species and Poaceae accounting for 14.28%.
Copyright © by EnPress Publisher. All rights reserved.