The silver nanoparticles (AgNPs) exhibit unique and tunable plasmonic properties. The size and shape of these particles can manipulate their localized surface plasmon resonance (LSPR) property and their response to the local environment. The LSPR property of nanoparticles is exploited by their optical, chemical, and biological sensing. This is an interdisciplinary area that involves chemistry, biology, and materials science. In this paper, a polymer system is used with the optimization technique of blending two polymers. The two polymer composites polystyrene/poly (4-vinylpyridine) (PS/P4VP) (50:50) and (75:25) were used as found suitable by their previous morphological studies. The results of 50, 95, and 50, 150 nm thicknesses of silver nanoparticles deposited on PS/P4VP (50:50) and (75:25) were explored to observe their optical sensitivity. The nature of the polymer composite embedded with silver nanoparticles affects the size of the nanoparticle and its distribution in the matrix. The polymer composites used are found to have a uniform distribution of nanoparticles of various sizes. The optical properties of Ag nanoparticles embedded in suitable polymer composites for the development of the latest plasmonic applications, owing to their unique properties, were explored. The sensing capability of a particular polymer composite is found to depend on the size of the nanoparticle embedded in it. The optimum result has been found for silver nanoparticles of 150 nm thickness deposited on PS/P4VP (75:25).
Humic substances are used in agriculture as promoters of plant growth, especially of the root system. The objective of the work was to evaluate the effect of the application of different doses of fulvic acid on the growth and productivity of American lettuce, Raider Plus cultivar. The experimental design used was entirely randomized, with five treatments of fulvic acid 0, 1, 2, 4, 8 mL·L-1 and four repetitions, applied at the time of transplanting. Two experiments were conducted simultaneously: one in the greenhouse, where fresh and dry mass of the aboveground and root parts, length and volume of the roots were evaluated; and the other in the field, where, at the end of the cycle, fresh and dry mass of the aboveground parts, number of leaves, stem length and average head circumference were evaluated. The application of different doses of fulvic acid promoted the growth of lettuce plants, especially the root system. The emission of roots, with predominance, of those of smaller diameter, was found in the higher concentrations of fulvic acid. The number of leaves and the average circumference of the head expressed responses in the concentrations of fulvic acid.
Infrared thermal imaging technology is another new branch for medical imaging after traditional medical imaging technologies such as X-ray, ultrasound and magnetic resonance (MRI). It has the advantages of noninvasive, nondestructive, simple and fast. Its application can radiate multiple clinical departments. This paper mainly expounds the principle, influencing factors of medical infrared thermography and its application in radiation protection and other medical fields.
In the last several decades, cardiovascular diseases (CVDs) have emerged as a major hazard to human life and health. Conventional formulations for the treatment of CVD are available, but they are far from ideal because of poor water solubility, limited biological activity, non-targeting, and drug resistance. With the advancement of nanotechnology, a novel drug delivery approach for the treatment of CVDs has emerged: nano-drug delivery systems (NDDSs). NDDSs have shown significant advantages in tackling the difficulties listed above. Cytotoxicity is a difficulty with the use of non-destructive DNA sequences. NDDS categories and targeted tactics were outlined, as well as current research advancements in the diagnosis and treatment of CVDs. It’s possible that gene therapy might be included into nano-carriers in the delivery of cardiovascular medications in the future. In addition, the evaluation addressed the drug’s safety.
Nanocomposites are high performance materials which reveal rare properties. Nanocomposites have an estimated annual growth rate of 25% and fastest demand to be in engineering plastics and elastomers. Their prospective is so prominent that they are valuable in numerous areas ranging from packaging to biomedical applications. In this review, the various types of matrix nanocomposites are discussed highlighting the need for these materials, their processing approaches and some recent results on structure, properties and potential applications. Perspectives include need for such future materials and other interesting applications. Being environmentally friendly, applications of nanocomposites propose new technology and business opportunities for several sectors of the aerospace, automotive, electronics and biotechnology industries.
Copyright © by EnPress Publisher. All rights reserved.