The effects of Zn2+ stress on seed germination, seedling growth and chlorophyll content were studied in order to better understand the effect of heavy metal Zn on the growth and development of green plants. The concentration gradient of Zn2+ was 20, 50,100,150,200,300,500,700mg / L, and deionized water was used as control. The results showed that under the Zn2+ stress condition, the germination index of the rhubarb seeds increased with the increase of Zn2+ concentration. Germination potential, germination rate and germination index were the highest when Zn2+concentration was 100mg / L, the conductivity was the lowest at zinc concentration of 100mg / L, the root length, stem length and chlorophyll content of Zn2+ gradually reduced. The results showed that the amount of Zn2+ could promote seed germination, but the root length, bud length and chlorophyll content of seedlings could be affected by different degrees. The zinc fertilizer should be used in the production.
Water scarcity, particularly in arid and semi-arid regions, is a critical issue affecting forest management. This study investigates the effects of drought stress on the water requirement and morphological characteristics of two important tree species Turkish pine and Chinaberry. Using a factorial design, the study examines the impact of three age stages (one-year-old, three-year-old, and five-year-old plants) and three levels of drought stress on these species. Microlysimeters of varying sizes were employed to simulate different drought conditions. Soil moisture was monitored to show the effect of the various irrigation schedules. The study also calculated reference crop evapotranspiration (ET0) using the PMF-56 method and developed plant coefficients (Kc) for the species. Results showed that evapotranspiration increased with soil moisture, peaking during summer and decreasing in winter. Turkish pine exhibited higher plant ET than Chinaberry, particularly among one-year-old seedlings. Drought stress significantly reduced evapotranspiration and water uses for both species, highlighting the importance of efficient water management in afforestation projects. The findings underscore the necessity of selecting drought-resistant species and optimizing irrigation practices to enhance the sustainability of green spaces in arid regions. These insights are crucial for improving urban forestry management and mitigating the impacts of water scarcity in Iran and similar climates globally.
Potassium is an essential macronutrient for living creatures on earth and in plants, it plays a very significant role in determining the overall health of the plants. Although potassium is present in the soil, it is present in a form that is inaccessible to the plants, and hence synthetic harmful non-eco-friendly potassium fertilizers are used. To overcome this problem, the use of eco-friendly potassium-solubilizing bacteria comes into play. The goal of the present study was to assess the potassium-solubilizing bacteria that inhabit the farm rhizosphere, which demonstrate the presence of enzymes associated with plant growth promotion and antagonistic properties. A total of thirty-four isolates were isolated from the rhizosphere. All these isolates were subjected to a potassium solubilization test on Aleksandrov agar medium, out of which fourteen were found to possess potassium solubilizing ability. On the basis of the 16S rRNA gene sequencing, the most potential potassium-solubilizing bacterium was identified as Proteus mirabilis PSCR17. The plant growth promoting abilities and production of biocontrol enzymes of this isolate were evaluated, and the results indicated, in addition to potassium solubilization, the isolate was positive for indole acetic acid production, hydrogen cyanide production, amylase, catalase, cellulase, chitinase, and protease. The use of potassium fertilizers is harmful to the environment and ecosystem; hence, this study concludes that P. mirabilis PSCR17 can be used as a substitute for chemical potassium fertilizers to improve the growth and biocontrol traits of the plants in a sustainable manner after further research.
Globalization and economic integration have an impact on increasing trade volume and economic growth in various countries, especially those that are open in their economies. This situation also provides ease of capital mobility between countries, which makes investment not only rely on domestic investment but also on foreign direct investment. Exchange rates and inflation also affect export growth, imports, and economic growth. The purpose of this study is to determine the effect of exchange rate, inflation, foreign direct investment, government expenditure, and economic openness on export and import growth. This study used time series data during the period 1980–2021, sourced from UNCTAD, ASYB, and Indonesian Central Bank (BI). The analysis model used is multiple linear regression with the help of EViews software, which first tests classical assumptions so that the regression results are Best Linier Unbiased Estimator (BLUE). The results show that foreign direct investment and government spending can significantly increase the rate of exports and imports. Meanwhile, the depreciating rupiah against the US dollar cannot encourage an increase in both exports and imports. Furthermore, foreign direct investment, government spending, and economic openness can significantly increase economic growth. The other variables, net exports and inflation, have no effect on Indonesia’s economic growth rate.
In higher eukaryotes, the genes’ architecture has become an essential determinant of the variation in the number of transcripts (expression level) and the specificity of gene expression in plant tissue under stress conditions. The modern rise in genome-wide analysis accounts for summarizing the essential factors through the translocation of gene networks in a regulatory manner. Stress tolerance genes are in two groups: structural genes, which code for proteins and enzymes that directly protect cells from stress (such as genes for transporters, osmo-protectants, detoxifying enzymes, etc.), and the genes expressed in regulation and signal transduction (such as transcriptional factors (TFs) and protein kinases). The genetic regulation and protein activity arising from plants’ interaction with minerals and abiotic and biotic stresses utilize high-efficiency molecular profiling. Collecting gene expression data concerning gene regulation in plants towards focus predicts an acceptable model for efficient genomic tools. Thus, this review brings insights into modifying the expression study, providing a valuable source for assisting the involvement of genes in plant growth and metabolism-generating gene databases. The manuscript significantly contributes to understanding gene expression and regulation in plants, particularly under stress conditions. Its insights into stress tolerance mechanisms have substantial implications for crop improvement, making it highly relevant and valuable to the field.
Copyright © by EnPress Publisher. All rights reserved.