Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
Hybrid learning (HL) has become a significant part of the learning style for the higher education sector in the Sri Lankan context amidst the COVID-19 pandemic and the subsequent economic crisis. This research study aims to discover the effectiveness of hybrid learning (EHL) practices in enhancing undergraduates’ outcomes in Sri Lankan Higher Educational Institutions (HEIs) management faculties. The data for the study were gathered through an online questionnaire survey, which received 379 responses. The questionnaire contained 38 questions under four sections covering independent variables, excluding demographic questions. The results indicate that hybrid learner attitude, interaction, and benefits of hybrid learning positively impact the effectiveness of hybrid learning. The results remain consistent even after controlling for socio-demographic factors and focusing only on students employed during their higher education. The study concluded that employed students have a higher preference for the effectiveness of hybrid learning concepts, and the benefits of hybrid learning play a crucial role in enhancing the effectiveness among undergraduates. The study analyzes COVID-19’s impact on higher education, proposing hybrid learning and regulatory frameworks based on pandemic experiences while stressing the benefits of remote teaching and research.
To save patients’ lives, it is important to go for an early diagnosis of intracranial hemorrhage (ICH). For diagnosing ICH, the widely used method is non-contrast computed tomography (NCCT). It has fast acquisition and availability in medical emergency facilities. To predict hematoma progression and mortality, it is important to estimate the volume of intracranial hemorrhage. Radiologists can manually delineate the ICH region to estimate the hematoma volume. This process takes time and undergoes inter-rater variability. In this research paper, we develop and discuss a fine segmentation model and a coarse model for intracranial hemorrhage segmentations. Basically, two different models are discussed for intracranial hemorrhage segmentation. We trained a 2DDensNet in the first model for coarse segmentation and cascaded the coarse segmentation mask output in the fine segmentation model along with input training samples. A nnUNet model is trained in the second fine stage and will use the segmentation labels of the coarse model with true labels for intracranial hemorrhage segmentation. An optimal performance for intracranial hemorrhage segmentation solution is obtained.
In China, ideological and political education is currently the hot direction of teaching reform in various colleges and universities, yet the development of appropriate teaching evaluation methods needs to catch up. This study addresses the pressing need for a preliminary investigation into the complex relationships among ideological and political education, the students’ learning satisfaction and teaching quality. This research examines the influence of teaching and ideological and political education quality on students’ satisfactions by designing a set of scales, collecting about 3800 questionnaires. Utilizing Structural Equation Modeling (SEM) and qualitative interviews, this study reveals that the teaching quality directly affects students’ learning satisfaction and ideological and political education. Notably, ideological and political education can also affect students’ learning satisfaction. The findings underscore the importance of including ideological and political education assessments in evaluating courses. This research contributes to the ongoing dialogue on effective teaching evaluation methods in the context of evolving educational practices.
Lighting conditions in learning spaces can affect students’ emotions and influence their performance. This research seeks to verify the influence of classroom lighting on students’ academic performance under different conditions and measurement forms. The research method is based on the systematic review of research articles establishing case analyses characterizing lighting intensity and color temperature to determine ranges favorable to a higher level of attention and long-term memory. Also, this study shows relevant aspects of the cases representative of a sustainable solution and proposes a research model. The study found light intensity values between 350 and 1000 lux and color temperatures between 4000 and 5250 Kelvin that favor attention. Long-term memory reached the highest levels of measurement by analyzing different parameters sensitive to lighting conditions and questionnaires. In conclusion, it was demonstrated that an adequate light intensity and color temperature based on the greatest possible amount of natural light complemented with Light Emitting Diode (LED) light generates optimal lighting for the classroom, achieving energy efficiency in a sustainable solution and promoting student well-being and performance.
This study aims to predict whether university students will make efficient use of Artificial Intelligence (AI) in the coming years, using a statistical analysis that predicts the outcome of a binary dependent variable (in this case, the efficient use of AI). Several independent variables, such as digital skills management or the use of Chat GPT, are considered.The results obtained allow us to know that inefficient use is linked to the lack of digital skills or age, among other factors, whereas Social Sciences students have the least probability of using Chat GPT efficiently, and the youngest students are the ones who make the worst use of AI.
Copyright © by EnPress Publisher. All rights reserved.