Purpose: This research examines the intricate interplay between Business Intelligence (BI), Big Data Analytics (BDA), and Artificial Intelligence (AI) within the realm of Supply Chain Management (SCM). While the integration of these technologies has promised improved operational efficiency and decision-making capabilities, concerns about complexities and potential overreliance on technology persist. The study aims to provide insights into achieving a balance between data-driven insights and qualitative factors in SCM for sustained competitiveness. Design/methodology/approach: The research executed interviews with ten Arab Gulf-based consulting firms. These companies’ ability to successfully complete BI projects is well recognised. Findings: Through examining the interplay of human judgement and data-driven strategies, addressing integration challenges, and understanding the risks of excessive data reliance, the research enhances comprehension of the modern SCM landscape. It underscores BI’s foundational role, the necessity of balanced human input, and the significance of customer-centric strategies for lasting competitive advantage and relationships. Practical implications: The research provided information for organizations seeking to effectively navigate the complexities of integrating data-driven technologies in SCM. The research is a foundation for future studies to delve deeper into quantitative measurement methodologies and effective data security strategies in the SCM context. Originality: The research highlights the value of integrating BI, BDA, and AI in SCM for improved efficiency, cost reduction, and customer satisfaction, emphasising the need for a balanced approach that combines data-driven insights, human judgement, and customer-centric strategies to maintain competitiveness.
The application of quality management methods and tools is an important prerequisite for the success and performance increase of manufacturing enterprises. The paper deals with the application of methods and tools of quality management (MTQM) in manufacturing enterprises. The paper aims to analyze whether there is a relationship between the application of MTQM and the size of enterprises, the use of MTQM, and the performance of enterprises measured through the achieved profit. It also analyzes the impact of MTQM on the agility of manufacturing enterprises measured through the decrease in sales expressed in revenues during the pandemic period. The paper presents the results of the research which was conducted between 2020–2022. Several statistical tools such as the Chi-square goodness-of-fit test, Pearson’s chi-square test, and contingency analysis were used to evaluate the different analyses as well as the representativeness of the sample. Based on the results, it can be concluded that there are differences in the use of MTQM and the size of the enterprise as well as the performance of the enterprises. At the same time, the hypothesis that enterprises using a wider range of quality management methods and tools have a higher potential to adapt to unexpected market changes was also confirmed.
This research uses both quantitative and qualitative research methodologies to examine the complex factors affecting community resilience in various settings. In this case, the research explores how social cohesion, governance effectiveness, adaptability, community involvement, and the specified difficulties influence resilience results by using the five pillars of resilience as variables. Descriptive and inferential statistics are used to test hypotheses on the relationships between social cohesion, governance effectiveness, adaptive capacity, and community resilience variables. Qualitative data provides further insights into the quantitative results by providing broader views and experiences of the community. The study shows how social capital is important in increasing community capacity, stressing the importance of social relations and trust in developing community solutions to disasters. Another major factor that stands out is the governance factor that ensures that decisions are made, and actions taken in line with the community’s best interest in improving its ability to prepare for and respond to disasters. Adaptive capacity is seen as a key component of resilience and this paper emphasizes the importance of communities to come up with measures that can be adjusted to the changing circumstances. In summary, this study enriches theoretical understanding and offers practical applications of the processes that can enhance community resilience based on the principles of social inclusion, sound governance, and context-specific solutions.
Young people are a traditional risk group for radicalization and involvement in protest and extremist activities. The relevance of this topic is due to the growing threat of youth radicalization, the expansion of the activities of extremist organizations, and the need to organize high-quality preventive work in educational organizations at various levels. The article provides an overview of research on the topic under consideration and also presents the results of a series of surveys in general educational institutions and organizations of secondary vocational education (n = 11,052), universities (n = 3966) located in the Arctic zone of the Russian Federation. The results of the study on aspects of students’ ideas about extremism are presented in terms of assessing their own knowledge about extremism, the presence/absence of radically minded people around them, determining the degree of threat from the activities of extremist groups for themselves and their social environment, and identifying approaches to preventing the growth of extremism in society. Conclusions are drawn about the need to improve preventive work models in educational organizations towards a targeted (group) approach.
Copyright © by EnPress Publisher. All rights reserved.