The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
Oil spills (OS) in waters can have major consequences for the ecosystem and adjacent natural resources. Therefore, recognizing the OS spread pattern is crucial for supporting decision-making in disaster management. On 31 March 2018, an OS occurred in Balikpapan Bay, Indonesia, due to a ship's anchor rupturing a seafloor crude oil petroleum pipe. The purpose of this study is to investigate the propagation of crude OS using coupled three-dimensional (3D) model from DHI MIKE software and remote sensing data from Sentinel-1 SAR (Synthetic Aperture Radar). MIKE3 FM predicts and simulates the 3D sea circulation, while MIKE OS models the path of oil's fate concentration. The OS model could identify the temporal and spatial distribution of OS concentration in subsurface layers. To validate the model, in situ observations were made of oil stranded on the shore. On 1 April 2018, at 21:50 UTC, Sentinel-1 SAR detected an OS on the sea surface covering 203.40 km2. The OS model measures 137.52 km2. Both methods resulted in a synergistic OS exposure of 314.23 km2. Wind dominantly influenced the OS propagation on the sea surface, as detected by the SAR image, while tidal currents primarily affected the oil movement within the subsurface simulated by the OS model. Thus, the two approaches underscored the importance of synergizing the DHI MIKE model with remote sensing data to comprehensively understand OS distribution in semi-enclosed waters like Balikpapan Bay detected by SAR.
This study aims to examine and challenge the impact of local government policy governance on the oil palm plantation sector in Riau Province, Indonesia. It was discovered that 1,628 million hectares of illegal oil palm plantations are located within forest areas. Plantation area and crop harvest areas are declining due to the increase in damaged old plants, low productivity of plantation crops, inadequate facilities and infrastructure conditions, low technology application, plantation business licensing, limited downstream plantation industry and marketing, assistance in changing the attitudes, behavior, and skills of farmers. The methodology used was exploratory qualitative to explore this topic, and the determination of research topics was conducted using Biblioshiny application analysis. Then, the data was analyzed using Nvivo 12 Plus software. The results of this study discovered that the policy governance of the oil palm plantation sector as a leading commodity in Riau Province, Indonesia, is influenced by three dimensions: firstly, the actor dimension; secondly, the structural dimension; and third, the empirical dimension of governance. This research contributes as a knowledge reference to oil palm plantations.
The new oil derivatives transportation scheme proposed by the 2013 Mexican Energy Reform allowed new participants to enter the sector. The new legal framework requires fulfilling many requirements and corresponding duties for the transportation of oil products. The Mexican government already has an institution dedicated to measuring the regulatory cost of each federal procedure. This work aims to quantify the regulatory costs associated with the procedures and their compliance to obtain permits for transporting oil products by truck. We use the standard cost method to measure these costs, considering all associated costs. The results showed that two government offices did not adequately measure these costs. They did not consider relevant information on frequency and opportunity costs, resulting in undervaluation and leading to wrong expectations. As a result of this research, we provide a more accurate way of estimating these costs, which brings greater certainty in the budgeting of these projects and, therefore, increases the probability of survival and success.
In this paper, we explore the static and dynamic effects of oil rent on competitiveness in Saudi Arabia’s economy during the period 1970–2022. In addition, we examined the short-run, strong and long-run relationships between exports and industry, inflation, energy use (oil rents) and agriculture using the Autoregressive Distributed Lag (ARDL) approach developed. The analysis showed that government spending will contribute to enhancing the competitive environment with a difference of one year. Moreover, the industry will contribute to increasing competitiveness for a positive relationship in the long term. The results stated that there is an insignificant relationship between competitiveness, inflation, and oil rents. The analysis also shows that inflation has a negative impact with statistical significance in the short term. In addition, the error correction model (ECM) coefficient is negative and has statistical significance at 0.76 at a 1% significant level, which indicates the existence of an error correction mechanism and thus the existence of a long-term relationship between the variables.
Copyright © by EnPress Publisher. All rights reserved.