Lack of knowledge, attitude, and behavior in managing leftover foods in households impacts the natural ecosystem and food chain, particularly in developing countries. This research aims to analyze appropriate methods for reducing and processing food waste produced in household areas. This research method uses qualitative research with operational research methods carried out for 6 months on 25 housewives in Pondok Labu Village in South Jakarta, Indonesia. The research was carried out in 3 stages, the first stage before the intervention, the second stage providing the intervention, and the third stage after the intervention. Results showed that before the intervention, on average each respondent produced 351 g of food waste each day. This amount decreased to 8.43 g/day after respondents participated in socialization to reduce food waste and training to manage food waste. The concluded that a combination of education and training improves knowledge, attitude, and behavior in household food waste management and helps moderate food waste generation.
In the face of growing competition, industrial and commercial firms need more effective strategies to gain competitive advantages. This study investigates the role of enterprise risk management (ERM) as a mediator in highlighting the significance of innovation capability on profitability in industrial and commercial firms listed on the Amman Stock Exchange (ASE). Data were collected from 244 respondents using a standardized questionnaire and analyzed with SPSS software. The results indicate that the innovation capability has an impact on profitability in industrial and commercial firms, as well as their ERM practices. Additionally, ERM mediates the relationship between innovation capability and profitability. Firms that adopt distinctive innovation strategies tend to maintain formal ERM strategies, which in turn enhance market superiority and profitability. This research offers some significant managerial ramifications that may be essential for business owners, executives, and decision-makers involved in the development of firms.
Business intelligence is crucial for businesses, from start-ups to multinationals. Examining the role and efficacy of business intelligence (BI) technologies in gathering, processing, and evaluating data to assist responsible management practices and decision-making is crucial in the modern age, especially for educational institutions. This study investigates the impact of Business Intelligence (BI) tools on Knowledge Management (KM) stages and their subsequent influence on Responsible Business Practices Outcomes in the educational sector of the United Arab Emirates. Using a quantitative research design, the study collected data from 406 faculty and staff members across various UAE universities via a structured survey. It analyzed the data using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results revealed a significant positive relationship between the use of BI Tools and the implementation of KM Stages, indicating that the utilization of BI tools is instrumental in enhancing knowledge management processes. However, the direct effect of BI Tools’ usage on responsible business practices’ outcomes was insignificant, suggesting the need for a mediating factor. KM Stages Implementation emerged as a significant mediator, indicating that the benefits of BI tools on responsible business practices are realized through their influence on KM processes. Moderation analyses showed that Institutional Culture, Training, and Expertise significantly moderated the relationship between BI Tools Usage and KM stage implementation, while Support from Management did not have a significant moderating effect. These findings highlight the importance of fostering an enabling institutional culture and investing in training and expertise to leverage the full potential of BI tools in promoting responsible business practices in educational settings. The study contributes to the literature on technology adoption in education and provides practical implications for educational administrators and policymakers seeking to integrate BI tools into their institutional practices.
We analyze Thailand’s projected 2023–2030 energy needs for power generation using a constructed linear programming model and scenario analysis in an attempt to find a formulation for sustainable electricity management. The objective function is modeled to minimize management costs; model constraints include the electricity production capacity of each energy source, imports of electricity and energy sources, storage choices, and customer demand. Future electricity demands are projected based on the trend most closely related to historical data. CO2 emissions from electricity generation are also investigated. Results show that to keep up with future electricity demands and ensure the country’s energy security, energy from all sources, excluding the use of storage systems, will be necessary under all scenario constraints.
Breast cancer was a prevalent form of cancer worldwide. Thermography, a method for diagnosing breast cancer, involves recording the thermal patterns of the breast. This article explores the use of a convolutional neural network (CNN) algorithm to extract features from a dataset of thermographic images. Initially, the CNN network was used to extract a feature vector from the images. Subsequently, machine learning techniques can be used for image classification. This study utilizes four classification methods, namely Fully connected neural network (FCnet), support vector machine (SVM), classification linear model (CLINEAR), and KNN, to classify breast cancer from thermographic images. The accuracy rates achieved by the FCnet, SVM, CLINEAR, and k-nearest neighbors (KNN) algorithms were 94.2%, 95.0%, 95.0%, and 94.1%, respectively. Furthermore, the reliability parameters for these classifiers were computed as 92.1%, 97.5%, 96.5%, and 91.2%, while their respective sensitivities were calculated as 95.5%, 94.1%, 90.4%, and 93.2%. These findings can assist experts in developing an expert system for breast cancer diagnosis.
Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
Copyright © by EnPress Publisher. All rights reserved.