Background: Digital transformation in the sports industry has become increasingly crucial for sustainable development, yet comprehensive empirical evidence on policy effectiveness and risk management remains limited. Purpose: This study investigates the impact of policy support and risk factors on digital transformation in sports companies, examining heterogeneous effects across different firm characteristics and regional contexts. Methods: Using panel data from 168 sports companies listed on China's A-shares markets and the New Third Board from 2019 to 2023, this study employs multiple regression analyses, including baseline models, instrumental variables estimation, and robustness tests. The digital transformation level is measured through a composite index incorporating digital infrastructure, capability, and innovation dimensions. Results: The findings reveal that policy support significantly enhances digital transformation levels (coefficient = 0.238, p < 0.01), while financial risks demonstrate the strongest negative impact (−0.162, p < 0.01). Large firms and state-owned enterprises show stronger responses to policy support (0.312 and 0.278, respectively, p < 0.01). Regional development levels significantly moderate the effectiveness of policy implementation. Conclusions: The study provides empirical evidence for the differential effects of policy support and risk factors on digital transformation across various firm characteristics. The findings suggest the need for differentiated policy approaches considering firm size, ownership structure, and regional development levels. Implications: Policy makers should develop targeted support mechanisms addressing specific challenges faced by different types of firms, while considering regional disparities in digital transformation capabilities.
The rise of digital communication technologies has significantly changed how people participate in social protests. Digital platforms—such as social media—have enabled individuals to organize and mobilize protests on a global scale. As a result, there has been a growing interest in understanding the role of digital communication in social protests. This manuscript provides a comprehensive bibliometric analysis of the evolution of research on digital communication and social protests from 2008 to 2022. The study employs bibliometric methodology to analyze a sample of 260 research articles extracted from the SCOPUS core collection. The findings indicate a significant increase in scholarly investigations about digital communication and its role in social protest movements during the past decade. The number of publications on this topic has increased significantly since 2012—peaking in 2022—indicating a heightened interest following COVID-19. The United States, United Kingdom, and Spain are the leading countries in publication output on this topic. The analysis underlines scholars employing a range of theoretical perspectives—including social movement theory, network theory, and media studies—to identify the relationship between digital communication and social protests. Social media platforms—X (Twitter), Facebook, and YouTube—are the most frequently studied and utilized digital communication tools engaged in social protests. The study concludes by identifying emerging topics relating to social movements, political communication, and protest, thereby suggesting gaps and opportunities for future research.
Studies show that Fourth Industrial Revolution (4IR) technologies can enhance compliance with COVID-19 guidelines within the parties in the construction industry in the future and mitigate job loss. It implies that mitigating job loss improves the achievement of Sustainable Development Goal 1 (SDG 1) (eliminate poverty). There is a paucity of literature concerning 4IR technologies application and COVID-19 impact on South Africa’s construction industry. Thus, this paper investigates the impacts of the pandemic on the sector and the roles of digital technologies in mitigating job loss in future pandemics. Data were collected via virtual semi-structured interviews. The participants proffered unexplored insights into the impact of the pandemic on the sector and the possible roles that 4IR technology can play in mitigating the spread of the virus within the sector. Findings show that the sector was hit, especially the low-income earners, threatens to achieve Goal 1, despite government institutions’ intervention, such as economic support programmes, health and safety guidelines awareness, and medical facilities. Findings group the emerged impacts into health and safety, environmental, economic, productivity, social, and legal and insurance issues in South Africa. The study shows that technology can be advantageous to improving achieving Goal 1 in a pandemic era due to limited job loss.
The rapid advancement of artificial intelligence (AI) technology is profoundly transforming the information ecosystem, reshaping the ways in which information is produced, distributed, and consumed. This study explores the impact of AI on the information environment, examining the challenges and opportunities for sustainable development in the age of AI. The research is motivated by the need to address the growing concerns about the reliability and sustainability of the information ecosystem in the face of AI-driven changes. Through a comprehensive analysis of the current AI landscape, including a review of existing literature and case studies, the study diagnoses the social implications of AI-driven changes in information ecosystems. The findings reveal a complex interplay between technological innovation and social responsibility, highlighting the need for collaborative governance strategies to navigate the tensions between the benefits and risks of AI. The study contributes to the growing discourse on AI governance by proposing a multi-stakeholder framework that emphasizes the importance of inclusive participation, transparency, and accountability in shaping the future of information. The research offers actionable insights for policymakers, industry leaders, and civil society organizations seeking to foster a trustworthy and inclusive information environment in the era of AI, while harnessing the potential of AI-driven innovations for sustainable development.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
Copyright © by EnPress Publisher. All rights reserved.