Lead sulfide (PbS) is an important IV-VI semiconductor material with narrow bandwidth and wide wave width, which attracts people's attention. Nano-level PbS has many novel optoelectronic properties and has a wide range of applications in the field of optoelectronics, such as infrared optoelectronic devices, photovoltaic devices, light-emitting devices and display devices. In this paper, Pbs is produced by solvent thermal method by using lead acetate as lead source, sulfur power as sulfur source, ethylene glycol as solvent, and acetic acid to provide acidic environment. The reaction acidity, type of lead source, amount of sulfur source and other aspects will be explored. The products obtained under different conditions were characterized by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM). The results showed that PbS produced at 140°C for 24 hours, using 14mL ethylene glycol and 1.2mL acetic acid has the best morphology. It has a non-planar six-arm symmetrical structure. Finally, we prepare the lead sulfide composite Ni/PbS, and characterized it.
In view of the fact that the convolution neural network segmentation method lacks to capture the global dependency of infected areas in COVID-19 images, which is not conducive to the complete segmentation of scattered lesion areas, this paper proposes a COVID-19 lesion segmentation method UniUNet based on UniFormer with its strong ability to capture global dependency. Firstly, a U-shaped encoder-decoder structure based on UniFormer is designed, which can enhance the cooperation ability of local and global relations. Secondly, Swin spatial pyramid pooling module is introduced to compensate the influence of spatial resolution reduction in the encoder process and generate multi-scale representation. Multi-scale attention gate is introduced at the skip connection to suppress redundant features and enhance important features. Experiment results show that, compared with the other four methods, the proposed model achieves better results in Dice, loU and Recall on COVID-19-CT-Seg and CC-CCIII dataset, and achieves a more complete segmentation of the lesion area.
This review provided a detailed overview of the different synthesis and characterization methods of polymeric nanoparticles. Nanoparticles are defined as solid and colloidal particles of macromolecular substances ranging in size under 100 nm. Different types of nanoparticles are used in many biological fields (bio-sensing, biological separation, molecular imaging, anticancer therapy, etc.). The new features and functions provided by nano dimensions are largely different from their bulk forms. High volume/surface ratio, improved resolution and multifunctional capability make these materials gain many new features.
The Method of Discretization in Time (MDT) is a hybrid numerical technique intended to alleviate upfront the computational procedure of timedependent partial differential equations of parabolic type upfront. The MDT engenders a sequence of adjoint second order ordinary differential equations, wherein the space coordinate is the independent variable and time becomes an embedded parameter. Essentially, the adjoint second order ordinary differential equations are considered of “quasistationary” nature. In this work, the MDT is used for the analysis of unsteady heat conduction in regular bodies (large wall, long cylinder and sphere) accounting for nearly constant thermophysical properties, uniform initial temperature and surface heat flux. In engineering applications, the surface heat flux is customarily provided by electrical heating, radiative heating and pool fire heating. It is demonstrated that the approximate, semianalytical temperature solutions of the first adjoint “quasistationary” heat conduction equations using the first time jump are easily obtainable for each regular body. For enhanced acccuracy, regression analysis is applied to the deviations of the dimensionless surface temperature as a function of the dimensionless time for each regular body.
In order to understand the finishing effect of Waterborne Acrylic Paint under different painting methods and amount, bamboo-laminated lumber for furniture was coated with waterborne acrylic paint, then the effects of different painting methods and amount on the drying rate, smoothness, hardness, adhesion and wear resistance of the paint film were investigated. Further, the mechanism of film formation was described by thermal property analysis using thermogravimetry and differential scanning calorimeter. The results show that different painting methods have little effect on film properties, the drying time of primer and topcoat are not affected by them, which is 8/8.5 min for primer surface/solid and 6.5/7 min for topcoats. The film surface hardness and adhesion can reach B and 0 grade, the best wear resistance of the film is 51.24 mg·100 r−1 when using one-layer primer one-layer topcoat. Different coating amount has great influence on film properties, the drying speed of the film increases with the increase of the painting amount. The film properties reach the best when the painting amount is 80 g/m2, while too little painting amount leads to the decrease of hardness, and too much leads to the wear resistance weaken. Thermal analysis of the primer and topcoat show that water decomposition occurs at 100 ℃ and thermal decomposition of organic components occur at 350 ℃. Topcoats have better thermal stability than primers higher than that of topcoat, the topcoat displayed better thermal stability than the primer.
The present study aimed to delineate subsurface features and identify prospective metallic mineral deposits in the Adıyaman-Besni area, situated within the Southeastern Anatolian Thrust Belt of Turkey. This region, characterized by ophiolitic mélanges and volcanic massive sulfide (VMS) deposits in its geological framework, possesses significant mineralization potential, encompassing copper, lead, and various other sulfide minerals. Utilizing the combined methodologies of Induced Polarization (IP) and Electrical Resistivity Tomography (ERT), a comprehensive electrical mapping of the subsurface structures was conducted, revealing that mineralized zones had low resistivity and high chargeability. The findings indicate that the combined use of IP and ERT techniques yields excellent precision in accurately delineating the features of sulfide mineralization and the peripheries of mineral deposits. This study offers fundamental data for the economic assessment of prospective mineral deposits in the Adıyaman-Besni region and underscores the benefits of IP and ERT techniques in subsurface mapping and mineralization delineation investigations. The mineralized zone has low resistivity (< 50 ohm-m) and strong chargeability (> 30 ms), according to geophysical tests. It also offers a methodological framework for subsequent mineral exploration research in analogous geological formations.
Copyright © by EnPress Publisher. All rights reserved.