In order to replace conventional materials in the existing composite world, there has been a focus on adopting coir fibres, which are lightweight, adaptable, efficient, and have great mechanical qualities. This study describes the creation of environmentally responsible bio-composites with good mechanical characteristics that employ coir powder as a reinforcement, which has good interfacial integrity with an epoxy matrix. And these epoxy-coir composites supplemented with coir particles are predicted to function as a reliable substitute for traditional materials used in industrial applications. Here, untreated and alkali-treated coir fibres powder were employed as reinforcement, with epoxy resin serving as a matrix. An experimental investigation has been carried out to study the effect of coir powder reinforcement at different weight percentages (5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, and 30 wt%). The morphological study, followed by a scanning electron microscope (SEM) and an optical microscope (OM), demonstrated that the powder and matrix had the strongest adhesion at 20 wt% coir powder-reinforced composite, with no voids, bubbles, or cracks. Based on the entire investigation, the polymer composite with 20 wt% reinforcement exhibited better mechanical qualities than the other combinations.
The food industry progressively requires innovative and environmentally safe packaging materials with increased physical, mechanical, and barrier properties. Due to its unique properties, cellulose has several potential applications in the food industry as a packaging material, stabilizing agent, and functional food ingredient. A coffee pod is a filter of cellulosic, non-rigid, ready-made material containing ground portions and pressed coffee prepared in dedicated machines. In our study, we obtained, with homogenization and sonication, cellulose micro/nanoparticles from three different coffee pods. It is known that nanoparticulate systems can enter live cells and, if ingested, could exert alterations in gastrointestinal tract cells. Our work aims to investigate the response of HT-29 cells to cellulose nanoparticles from coffee pods. In particular, the subcellular effects between coffee-embedded nanocellulose (CENC) and cellulose nanoparticles (NC) were compared. Finally, we analysed the pathologic condition (Cytolethal Distending Toxin (CDT) from Campylobacter jejuni) on the same cells conditioned by NC and CENC. We evidenced that, for the cellular functional features analysed, NC and CENC pre-treatments do not worsen cell response to the C. jejuni CDT, also pointing out an improvement of the autophagic flux, particularly for CENC preconditioning.
Magnetic graphene oxide nanocomposites (M-GO) were successfully synthesized by partial reduction co-precipitation method and used for removal of Sr(II) and Cs(I) ions from aqueous solutions. The structures and properties of the M-GO was investigated by X-ray diffraction, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer (VSM) and N2-BET measurements. It is found that M-GO has 2.103 mg/g and 142.070 mg/g adsorption capacities for Sr(II) and Cs(I) ions, respectively. The adsorption isotherm matches well with the Freundlich for Sr(II) and Dubinin–Radushkevich model for Cs(I) and kinetic analysis suggests that the adsorption process is pseudo-second-ordered.
The sustainable development of the global economy and society necessitates the integration of environmental and socially responsible management, known as ESG (environmental, social, and corporate governance). Despite growing recognition of ESG’s importance, the strategic management of ESG factors in Kazakhstan’s telecommunications industry remains underexplored. This study bridges this gap by analyzing Kazakh telecom’s ESG strategies from 2019 to 2021 through a cross-sectional design and semi-structured interviews with 12 industry experts. Utilizing the National Rating Agency (NRA) methodology, the research evaluates environmental, social, and governance variables. Key findings reveal that Kazakh telecom excels in “Climate Change” and “Human Capital Management” but needs significant improvements in “Environmental Impact” and “Society.” The study offers specific recommendations such as enhancing corporate volunteering, responsible marketing, service quality, and integrating sustainable practices. The primary contributions of this research include actionable insights for improving ESG strategies in telecommunications companies and advocating for more systematic and standardized ESG assessment approaches. This study expands the understanding of how ESG principles can enhance competitiveness and sustainable development in the telecommunications industry, providing valuable guidance for industry practitioners and policymakers. It offers insights into effective ESG implementation practices and highlights critical areas requiring attention to drive sustainable development in telecommunications.
Antioxidants are derivatives of vitamin C or beta-carotene that prevent reactions stimulated by oxygen, peroxides, or free radicals, thus reducing the oxidative stress. They have found their way into many uses in treating several human diseases and reducing the risk of developing diseases like cancer. In view of this property, the present study was focussed in identifying several plants possessing antioxidative properties and which were also conserved in the ex-situ park of CSIR – Central Institute of Mining and Fuel Research, Dhanbad, India. Fifteen medicinal plants including herbs, shrubs and grasses are reported in this paper, and a collective insight has been presented about their antioxidant properties and the present state of their pharmacological applications. The specific chemical constituents abundant in the leaves, roots, stems, seeds and fruits of each of these plants have also been dealt with. To report a few antioxidant pharmacological preparations from Ayurvedic literature are Vimang, Maharishi Amrit Kalash (MAK4, MAK5), Maharishi Ayurved (MA631, MA47), MA Raja’s Cup, MA Student Rasayana and MA Ladies Rasayana. This review has been attempted to enhance the importance of the plants which are generally being neglected, so that it can used by the local people in rural areas for their cultivation and it will also pave the pathway for their subsequent future use in medicinal and research industry for drug formulation.
Water splitting has been one of the potential techniques as a clean and renewable energy resource for the fulfillment of world energy demands. One of the major aspects of this procedure is the exploitation of efficient and inexpensive electrocatalysts due to the fact that the water oxidation procedure is accompanied by a delayed reaction. In this research, ZnO-CoFe2O4 nanostructure was successfully synthesized via the green method and green resources from cardamom seeds and ginger peels for oxygen evolution reaction (OER). The modified Glassy carbon electrode (GCE) with ZnO-CoFe2O4 is effective for the electrochemical water oxidation interaction since it has sufficient electrical strength and excellent catalytic performance. The creation of rice-like and small granular structures of ZnO-CoFe2O4 nano-catalysts was confirmed by characterization methods such as XRD, FESEM, EDS and MAP. According to the achieved results, in the electrolysis of water, with in-cell voltage of 1.40 V and 50 mA cm–2 for current density in a 0.1 M KOH electrolyte and OER only has 170 mV overpotentials.
Copyright © by EnPress Publisher. All rights reserved.