To achieve the Paris Agreement’s temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
A salinity gradient solar pond (SGSP) is a large and deep artificial basin of layered brine, that collects and stores simultaneous solar energy for use in various applications. Experimental and theoretical studies have been launched to understand the thermal behavior of SGSPs, under different operating conditions. This article then traces the history of SGSPs, from their natural discovery to their current artificial applications and the progress of studies and research, according to their chronological sequence, in terms of determining their physical and dynamic aspects, their operation, management, and maintenance. It has extensively covered the theoretical and experimental studies, as well as the direct and laboratory applications of this technology, especially the most famous and influential in this field, classified according to the aspect covered by the study, with a comparison between the different results obtained. In addition, it highlighted the latest methods to improve the performance of an SGSP and facilitate its operation, such as the use of a magnetic field and the adoption of remote data acquisition, with the aim of expanding research and enhancing the benefit of this technology.
COVID-19 pandemic has caused many design bid build projects to suffer losses. Design bid build or DBB has the disadvantage of depth partnering. The research purpose is to reveal the depth of partnering of DBB, the characteristics of existing partnering in DBB through detection in each project life cycle in DBB, then efforts to increase DBB partnering to partnering in integrated project delivery (IPD). The methodology used is secondary data from three project DBB, then validation using focused group discussions (FGD) with expert judgment, then the Delphi method to analyse and propose recommendations. This project recommends that DBB project can improve the project performance so stakeholder can increase partnering toward integrated project delivery (IPD) partnering. This research can be used for increasing partnering in DBB projects towards partnering in IPD. This research will produce strategic recommendations that can be utilized by stakeholders (owner, contractor, designer) in improving project performance to generate great value for the project, will result in long-term project sustainability, improve relationships, and learn valuable lessons for future projects. DBB projects usually experience many problems due to the competitive nature of partnering for owners, contractors, and designers, so it is necessary to develop an overall strategy as an option to improve partnering in DBB project contracts. This research will help create a sustainable project by the owner, contractor, and designer.
This paper contributes to a long-standing debate in development practice: under what conditions can externally established participatory groups engage in the collective management of services beyond the life of a project? Using 10 years of panel data on water point functionality from Indonesia’s rural water program, the Program for Community-Based Water Supply and Sanitation, the paper explored the determinants of subnational variation in infrastructure sustainability. It then investigated positive and negative deviance cases to answer why some communities successfully engaged in system management despite being located in difficult conditions as per quantitative findings and vice versa. The findings show that differences in the implementation of community participation, driven by local social relations between frontline service providers, that is, village authorities and water user groups, explain sustainable management. This initial condition of state-society relations influences how the project is initiated, kicking off negative or positive reinforcing pathways, leading to community collective action or exit. The paper concludes that the relationships between frontline government representatives and community actors are important and are an underexamined aspect of the ability of external projects to generate successful community-led management of public goods.
This study investigates the impact of the Belt and Road Initiative (BRI) on the construction sector in Southeast Asia, focusing on Thailand, Malaysia, and Cambodia. Qualitative research approach is used to analyze the implications of Chinese investments in these countries, exploring both the opportunities and challenges faced by Chinese investors. Key research questions address the resilience of the construction sector, the obstacles encountered by investors, and the influence of policy on the construction business. Through interviews with CEOs and senior managers of major construction companies and a review of relevant documents, the study uncovers the economic and geopolitical motivations behind China’s BRI strategy. The findings reveal significant insights into the benefits and drawbacks of BRI financing, providing recommendations for overcoming challenges and leveraging future opportunities in Southeast Asian construction sectors.
India has experienced notable advancements in trade liberalization, innovation tactics, urbanization, financial expansion, and sophisticated economic development. Researchers are focusing more on how much energy consumption of both renewable and non-renewable accounts for overall system energy consumption in light of these dynamics. In order to gain an understanding of this important and contentious issue, we aim to examine the impact of trade openness, inventions, urbanization, financial expansion, economic development, and carbon emissions affected the usage of renewable and non-renewable energy (REU and N-REU) in India between 1980 and 2020. We apply the econometric approach involving unit root tests, FE-OLS, D-OLS, and FM-OLS, and a new Quantile Regression approach (QR). The empirical results demonstrate that trade openness, urbanization and CO2 emissions are statistically significant and negatively linked with renewable energy utilization. In contrast, technological innovations, financial development, and economic development in India have become a source of increase in renewable energy utilization. Technological innovations were considered negatively and statistically significant in connection with non-renewable energy utilization, whereas the trade, urbanization, financial growth, economic growth, and carbon emissions have been established that positively and statistically significant influence non-renewable energy utilization. The empirical results of this study offer some policy recommendations. For instance, as financial markets are the primary drivers of economic growth and the renewable energy sector in India, they should be supported in order to reduce CO2 emissions.
Copyright © by EnPress Publisher. All rights reserved.