This paper aims to explain the administrative and the Environmental, Social and Governance (ESG) of the Indonesian Spaceport Project in Biak, Papua, Indonesia, under the Public-Private Partnerships (PPP) scheme, particularly from the protest to fear of environmental damage and traditional rights. This paper analyzes the factors that cause the local society’s reluctance to accept the development of Indonesia’s very first commercial spaceport. This paper uses a doctrinal methodology, which examines changes in the trend of ESG in implementing PPP projects. The method used is a qualitative systematic review of national and international studies. This paper finds that the lack of legal certainty for administrative and ESG as the main factor contributing to the pitfall of the PPP project in Biak Papua. No clear Government Contracting Agency (GCA), plus the fact that the Indonesian government puts too much weight on business consideration in PPP while Papuan people need more ESG, especially considering the historical conflict in the region, has been the epicenter of the problem. Given the ESG-PPP regulatory failure of spaceport development in Biak, more focused studies using comparative study methodology are needed to propose a more robust and customized ESG in PPP regulations in a politically and historically sensitive area. The authors forward a regulatory reform to balance administration, ESG, and business considerations in PPP projects for a spaceport.
The ultimate objective of the study was to investigate the effects of being landlocked on the living standards in Sub-Saharan African (SSA) countries from 1991 to 2019. Adopting the two-step estimation technique of System GMM (generalized method of moments), the study found that being landlocked has a negative and significant effect on the living standards in SSA countries when using GDP per capita as the living standard measure. Moreover, the historical living standard experiences of SSA countries have a positive and significant influence on the current living standard level. In addition, the population growth rate has a positive and significant effect on the living standards in SSA countries. On the other hand, the official exchange rate, broad money as a percentage of GDP, and inflation have a negative and significant effect on the living standards in SSA countries. Generally, the estimated result reveals the existence of a significant variation in the living standards in landlocked and coastal SSA countries. This study suggests that regional integration between landlocked and transit countries should be improved to minimize entry costs and increase access to global markets for landlocked countries. We argue that this study is of interest to landlocked and coastal countries to increase trade integration and promote the development of both groups, and it will contribute to the scarce empirical evidence.
Improving the practical skills of Science, Technology, Engineering and Mathematics (STEM) students at a historically black college and university (HBCU) was done by implementing a transformative teaching model. The model was implemented on undergraduate students of different educational levels in the Electrical Engineering (EE) Department at HBCU. The model was also extended to carefully chosen high and middle schools. These middle and high school students serve as a pipeline to the university, with a particular emphasis on fostering growth within the EE Department. The model aligns well with the core mission of the EE Department, aiming to enhance the theoretical knowledge and practical skills of students, ensuring that they are qualified to work in industry or to pursue graduate studies. The implemented model prepares students for outstanding STEM careers. It also increases enrolment, student retention, and the number of underrepresented minority graduates in a technology-based workforce.
Nowadays, our life needs more and more electricity, and our lives cannot be without electricity, which requires our power to develop more quickly. Power plants are undoubtedly the place where electricity is produced. And now most of the power plant or chemical energy can be converted into heat, and then through the heat to do power production. The boiler is the main part of the power plant. Boiler unit consists of boiler body equipment and auxiliary equipment. The main body of the boiler consists of 'pot' (soft drinks system) and 'furnace' (combustion system). Baotou thermal power plant is mainly burning gas. The gas and air are at a certain rate into the furnace burning. This can greatly reduce the pollution of the environment, but also the full use of fuel. The soda system is mainly carried out in the drum. The heat generated by the combustion system heats the water in the drum, producing steam and then pushing the steam turbine into mechanical energy and finally into electrical energy. This has a high demand for water level, water composition, and the temperature of the steam produced in the drum. The water level should have upper and lower bounds, keeping it within a certain range. Water level is too high, will affect the steam drum soda separation effect, so that the steam drum exports of saturated steam with water increased, causing damage to the turbine, will cause serious explosion. And the water level is too low, it will affect the natural circulation of the normal, serious will make the individual water pipe to form a free water, resulting in flow stagnation, resulting in local metal wall overheating and burst pipe. Water in the heating at the same time will form a lot of scale, if not the chemical treatment of water will be in the formation of scale in the drum, cleaning more difficult, so the damage to the drum. The pressure of the drum is also an important control variable, and pressure control is highly correlated with liquid level control. It is necessary to ensure the integrity of the equipment, but also to ensure safety, followed by ensuring that the process of normal operation of the drum water. This time, the design is mainly for the unit steam temperature control system design. Steam temperature is one of the important indicators of boiler operation quality. It is too high and too low will significantly affect the power plant safety and economy. If the temperature of the steam is low, it will cause the power plant to increase the heat consumption and increase the axial thrust of the turbine to cause the thrust bearing to overload, but also cause the steam turbine to increase the final steam humidity, thus reducing the efficiency of the turbine, aggravating the erosion of the blade. On the contrary, the steam temperature is too high will make the super-heater wall metal strength decreased, and even burn the high temperature of the super-heater, the steam pipe and steam turbine high-pressure part will be damaged, seriously affecting safety. The boiler temperature control system mainly includes the adjustment of the superheated steam and the reheat steam temperature. The superheated steam temperature is the highest temperature in the boiler soda system. The stability of the steam temperature is very important for the safe and economical operation of the unit. Therefore, in the boiler operation, must ensure that the steam temperature in the vicinity of the specified value, and the temperature of the super-heater tube wall does not exceed the allowable working temperature.
Global navigation satellite system and its application fields are constantly expanding and deepening. This paper mainly introduces the current situation of global satellite navigation system and its application technology, development trend and application prospect. At the same time, this paper makes a comprehensive comparison of these navigation systems, analyzes the opportunities and challenges faced by China’s BeiDou satellite navigation system in the global context, and puts forward some suggestions for future work.
Copyright © by EnPress Publisher. All rights reserved.