In the face of growing competition, industrial and commercial firms need more effective strategies to gain competitive advantages. This study investigates the role of enterprise risk management (ERM) as a mediator in highlighting the significance of innovation capability on profitability in industrial and commercial firms listed on the Amman Stock Exchange (ASE). Data were collected from 244 respondents using a standardized questionnaire and analyzed with SPSS software. The results indicate that the innovation capability has an impact on profitability in industrial and commercial firms, as well as their ERM practices. Additionally, ERM mediates the relationship between innovation capability and profitability. Firms that adopt distinctive innovation strategies tend to maintain formal ERM strategies, which in turn enhance market superiority and profitability. This research offers some significant managerial ramifications that may be essential for business owners, executives, and decision-makers involved in the development of firms.
We analyze Thailand’s projected 2023–2030 energy needs for power generation using a constructed linear programming model and scenario analysis in an attempt to find a formulation for sustainable electricity management. The objective function is modeled to minimize management costs; model constraints include the electricity production capacity of each energy source, imports of electricity and energy sources, storage choices, and customer demand. Future electricity demands are projected based on the trend most closely related to historical data. CO2 emissions from electricity generation are also investigated. Results show that to keep up with future electricity demands and ensure the country’s energy security, energy from all sources, excluding the use of storage systems, will be necessary under all scenario constraints.
Breast cancer was a prevalent form of cancer worldwide. Thermography, a method for diagnosing breast cancer, involves recording the thermal patterns of the breast. This article explores the use of a convolutional neural network (CNN) algorithm to extract features from a dataset of thermographic images. Initially, the CNN network was used to extract a feature vector from the images. Subsequently, machine learning techniques can be used for image classification. This study utilizes four classification methods, namely Fully connected neural network (FCnet), support vector machine (SVM), classification linear model (CLINEAR), and KNN, to classify breast cancer from thermographic images. The accuracy rates achieved by the FCnet, SVM, CLINEAR, and k-nearest neighbors (KNN) algorithms were 94.2%, 95.0%, 95.0%, and 94.1%, respectively. Furthermore, the reliability parameters for these classifiers were computed as 92.1%, 97.5%, 96.5%, and 91.2%, while their respective sensitivities were calculated as 95.5%, 94.1%, 90.4%, and 93.2%. These findings can assist experts in developing an expert system for breast cancer diagnosis.
Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
Recently, Agile project management has received significant academic and industry attention from due to its advantages, such as decreased costs and time, increased effectiveness, and adaptiveness towards challenging business environments. This study primarily aims to investigate the relationship between the success factors and Agile project management methodology adoption and examine the moderating effect of perceived compatibility. The technology-organization-environment (TOE) framework and technology acceptance theories (UTAUT, IDT, and TAM) were applied as the theoretical foundation of the current study. A survey questionnaire method was employed to achieve the study objectives, while quantitative primary data were gathered using a carefully designed methodological approach focusing on Omani oil and gas industry. The PLS-SEM technique and SmartPLS software were used for hypotheses testing and data analysis. Resultantly, readiness, technology utilization, organizational factors, and perceived compatibility were the significant factors that promoted Agile methodology adoption in the oil and gas industry. Perceived compatibility moderated the relationship between success factors and Agile methodology. The findings suggested that people, technology, and organizational factors facilitate the Agile methodology under the technology acceptance theories and frameworks. Relevant stakeholders should adopt the study outcomes to improve Agile methodology adoption.
The mining sector faces a complex dilemma as an economic development agent through social upliftment in places where mining corporations operate. Resource extraction is destructive and non-renewable, making it dirty and unsustainable. To ensure corporate sustainability, this paper examines the effects of knowledge management (KM), organizational learning (OL), and innovation capability (IC) on Indonesian coal mining’s organizational performance (OP). We used factor and path analysis to examine the relationships between the above constructs. After forming a conceptual model, principal component analysis validated the factor structure of a collection of observed variables. Path analysis examined the theories. The hypothesized framework was confirmed, indicating a positive association between constructs. However, due to mining industry peculiarities, IC does not affect organizational performance (OP). This study supports the importance of utilizing people and their relevant skills to improve operational performance. The findings have implications for managers of coal mining enterprises, as they suggest that KM and OL are critical drivers of OP. Managers should focus on creating an environment that facilitates knowledge sharing and learning, as this will help improve their organizations’ performance.
Copyright © by EnPress Publisher. All rights reserved.