Public open spaces, such as squares, parks, and sports fields, serve as crucial hubs during and after disasters, fostering a sense of normalcy and community, promoting social cohesion, and facilitating community recovery. Additionally, they offer opportunities for promoting physical and mental well-being during such crises. This study aims to enhance the responsiveness of public open spaces to disasters by prioritizing disaster resilience in their planning and design. This study consists of two main stages. Firstly, a literature review is conducted to explore the current trends in research on public open space planning and design and the incorporation of disaster resilience. Results indicate that the primary focus of the current research on planning and designing public open spaces centers around sociocultural, psychological, environmental, and economic benefits. There is limited emphasis on integrating disaster resilience into public open space planning and design, leading to a lack of clear guidance for planners and architects. The emphasis on disaster resilience in public open space planning and design mainly began after 2010, with a notable increase observed in the last six years (2017–2023). This emphasis notably centers on climate change impacts, followed by floods, and then earthquakes. Secondly, drawing on the pivotal role of public open spaces during disasters, the importance of urban planning and design, and the existing gap in incorporating disaster resilience in current research on public open space planning and design, this study develops a novel framework for enhancing public open spaces’ responsiveness to disasters through resilient urban planning and design, based on four main disaster resilience criteria: multifunctionality, efficiency, safety, and accessibility. The insights gleaned from this study offer invaluable guidance to planners, architects, and decision-makers, empowering them to develop public open spaces that can effectively respond to various circumstances, ultimately contributing to bolstering community resilience and sustainability.
We present an interdisciplinary exploration of technostress in knowledge-intensive organizations, including both business and healthcare settings, and its impact on a healthy working life. Technostress, a contemporary form of stress induced by information and communication technology, is associated with reduced job satisfaction, diminished organizational commitment, and adverse patient care outcomes. This article aims to construct an innovative framework, called The Integrated Technostress Resilience Framework, designed to mitigate technostress and promote continuous learning within dynamic organizational contexts. In this perspective article we incorporate a socio-technical systems approach to emphasize the complex interplay between technological and social factors in organizational settings. The proposed framework is expected to provide valuable insights into the role of transparency in digital technology utilization, with the aim of mitigating technostress. Furthermore, it seeks to extend information systems theory, particularly the Technology Acceptance Model, by offering a more nuanced understanding of technology adoption and use. Our conclusion includes considerations for the design and implementation of information systems aimed at fostering resilience and adaptability in organizations undergoing rapid technological change.
The incorporation of artificial intelligence (AI) into language education has created new opportunities for improving the instruction and acquisition of Chinese characters. Nevertheless, the cognitive difficulties linked to the acquisition of Chinese characters, such as their intricate visual features and lack of clear meaning, necessitate thoughtful deliberation when developing AI-supported learning interventions. The objective of this project is to explore the capacity of a collaborative method between humans and machines in teaching Chinese characters, utilising the advantages of both human expertise and AI technology. We specifically investigate the utilisation of ChatGPT, a substantial language model, for the creation of instructional materials and evaluation methods aimed at teaching Chinese characters to individuals who are not native speakers. The study utilises a mixed-methods approach, which involves both qualitative examination of lesson plans created by ChatGPT and quantitative evaluation of student learning outcomes. The results indicate that the suggested framework for human-machine collaboration can successfully tackle the cognitive difficulties associated with learning Chinese characters, resulting in enhanced learner involvement and performance. Nevertheless, the research also emphasises the constraints of AI-generated material and the significance of human involvement in guaranteeing the accuracy and dependability of educational interventions. This research adds to the expanding collection of literature on AI-assisted language learning and offers practical insights for educators and instructional designers who aim to use AI tools into Chinese language curriculum. The results emphasise the necessity of employing a multi-disciplinary strategy in AI-supported language learning, incorporating knowledge from cognitive psychology, educational technology, and second language acquisition.
This research focused on the design and implementation of the flipped classroom approach for higher mathematics courses in medical colleges. Out of 120 students, 60 were assigned to the experimental group and 60 to the control group. In the continuous assessment, which included homework and quizzes, the average score of the experimental group was 85.5 ± 5.5, while that of the control group was 75.2 ± 8.1 (P < 0.05). For the final examination, the average score in the experimental group was 88.3 ± 6.2, compared to 78.1 ± 7.3 in the control group (P < 0.01). The participation rate of students in the experimental group was 80.5%, significantly higher than the 50.3% in the control group (P < 0.001). Regarding autonomous learning ability, the experimental group spent an average of 3.2 hours per week on self-study, compared to 1.5 hours in the control group (P < 0.005). Other potential evaluation indicators could involve the percentage of students achieving high scores (90% or above) in problem-solving tasks (25.8% in the experimental group vs. 10.3% in the control group, P < 0.05), and the improvement in retention of key concepts after one month (70.2% in the experimental group vs. 40.5% in the control group, P < 0.01). In conclusion, the flipped classroom approach holds substantial promise in elevating the learning efficacy of higher mathematics courses within medical colleges, offering valuable insights for educational innovation and improvement.
Attempts were made in the present study to design and develop skeletally modified ether linked tetraglycidyl epoxy resin (TGBAPSB), which is subsequently reinforced with different weight percentages of amine functionalized mullite fiber (F-MF). The F-MF was synthesized by reacting mullite fiber with 3-aminopropyltriethoxysilane (APTES) as coupling agent and the F-MF structure was confirmed by FT-IR. TGBAPSB reinforced with F-MF formulation was cured with 4,4’-diamino diphenyl methane (DDM) to obtain nanocomposite. The surface morphology of TGBAPSB-F-MF epoxy nanocomposites was investigated by XRD, SEM and AFM studies. From the study, it follows that these nanocomposite materials offer enhancement in mechanical, thermal, thermo-mechanical, dielectric properties compared to neat (TGBAPSB) epoxy matrix. Hence we recommend these nanocomposites for a possible use in advanced engineering applications that require both toughness and stiffness.
The curriculum reform in 2022 puts forward new requirements for the professional literacy cultivation of primary science teachers, and the cultivation of primary science classroom teaching skills is an important aspect of the professional literacy cultivation of science education teachers, mainly including subject knowledge and teaching theory, teaching design and preparation, teaching methods and strategies. On the basis of following the principle of combining theory and practice, diversified teaching and student subjectivity, the training strategies of group cooperative learning, observing the teaching process of excellent teachers, and strengthening the effect of micro-grid teaching are proposed, and in addition to the expected evaluation, it provides a certain theoretical basis for the cultivation of normal students in science education.
Copyright © by EnPress Publisher. All rights reserved.