Mangifera indica L. (Mango, Anacardiaceae) is a popular tropical evergreen tree known for its nutritional and medicinal values. It is native to India and Southeast Asia and is known as the “king of fruits” in India and the Philippines. It is considered important in Ayurveda and other systems of medicine. Mango fruit is unique in its taste, colour, aroma, and nutritional qualities. Mangoes are a rich source of polyphenols (Mangiferin, Gallotannins, Quercetin, Isoquercetin, Ellagic acid, Glucogallin, Kaempferol, Catechins, Tannins, and the unique Xanthonoid), phenolic acids (Hydroxybenzoic acids- Gallic, Vanillic, Syringic, Protocatechuic, and p-Hydroxybenzoic acids, Hydroxycinnamic acid derivatives-p-Coumaric, Chlorogenic, Ferulic, and Caffeic acids), flavonoids (β-carotene, α-carotene, β-cryptoxanthin, and Lutein), Vitamin A, Vitamin-B6 (pyridoxine), Vitamin-C, Vitamin-E, Carbohydrates, Amino acids, Organic acids, micronutrients (Potassium, Copper), fats (Omega-3 and 6 polyunsaturated fatty acids), dietary fibre and certain volatile compounds. About 25 different types of carotenoids have been isolated from the fruit pulp, which contributes to the colour of the fruit. Phytochemical and nutrient content may vary depending on the cultivar. Mangoes possess potential medicinal properties such as antioxidant, gastro-protective, anti-inflammatory, analgesic, immunomodulatory, anti-microbial, and many more. Mango fruit is an abundant source of all essential nutrients and phytochemicals; it could be ultilized as a nutritional supplement in the prevention and cure of several diseases. A comprehensive report on the nutritional and medicinal properties of fruit is presented below.
Modelling and simulation have now become standard methods that serve to cut the economic costs of R&D for novel advanced systems. This paper introduces the study of modelling and simulation of the infrared thermography process to detect defects in the hydroelectric penstock. A 3-D penstock model was built in ANSYS version 19.2.0. Flat bottom holes of different sizes and depths were created on the inner surface of the model as an optimal scenario to represent the subsurface defect in the penstock. The FEM was applied to mimic the heat transfer in the proposed model. The model’s outer surface was excited at multiple excitation frequencies by a sinusoidal heat flux, and the thermal response of the model was presented in the form of thermal images to show the temperature contrast due to the presence of defects. The harmonic approximation method was applied to calculate the phase angle, and its relationship with respect to defect depth and defect size was also studied. The results confirmed that the FEM model has led to a better understanding of lock-in infrared thermography and can be used to detect subsurface defects in the hydroelectric penstock.
Intelligent toy design and development talents need to master certain electronic intelligent control, arts and crafts design, product modeling design and other skills. There is a shortage of intelligent toy designers in our country, and toy enterprises are in urgent need of professional and technical personnel engaged in toy product modeling and functional design. Therefore, it is urgent to cultivate intelligent toy design and development talents. This paper explores the necessity of cross-professional training of intelligent toy design and development talents, relies on teachers' scientific research and enterprise projects, etc., takes graduation projects as a breakthrough, pushes back the talent training curriculum system, and proposes an cross-professional collaborative training model. Through cross-professional combination training intelligent toy design talents, so that they have the design thinking of toy designers and a certain degree of electronic engineer design thinking, can better adapt to the rapid development of modern toy design industry, enterprises changing new requirements.
This study aims to explore the design and application of a learning achievement evaluation model, in order to improve the quality of teaching in the field of education and promote student development. This article starts with the importance of constructing a learning effectiveness evaluation model, and then clarifies the basic concepts and related theories of learning effectiveness evaluation, providing theoretical support for subsequent model design. In the model design section of learning effectiveness evaluation, propose the model design principles, indicator selection, and construction process to ensure the accuracy and comparability of the evaluation model construction. In the application and evaluation section of the learning effectiveness evaluation model, the application and evaluation methods of the main models in practical teaching were explored. Finally, the issues that need to be noted in the design process of the evaluation model were proposed in order to design a more high-quality evaluation system and promote the improvement of education quality.
The work is devoted to the numerical solution of the initial boundary value problem for the heat equation with a fractional Riesz derivative. Explicit and implicit difference schemes are constructed that approximate the boundary value problem for the heat equation with a fractional Riesz derivative with respect to the coordinate. In the case of an explicit difference scheme, a condition is obtained for the time step at which the difference scheme converges. For an implicit difference scheme, a theorem on unconditional convergence is proved. An example of a numerical calculation using an implicit difference scheme is given. It has been established that when passing to a fractional derivative, the process of heat propagation slows down.
Low integrity is a challenge for any organization. However, most organizations emphasize integrity without explaining what is required of an individual with high integrity. Exhibiting high integrity is necessary for academics; yet, the level of academic integrity remains unclear. Therefore, the purpose of this study is to examine the integrity level of academicians in a Malaysian public university. This paper shares the findings on the level of integrity of academics based on a questionnaire completed by 213 academicians. Data were collected by survey questionnaire and was analyzed using descriptive and inferential statistics. An overall mean score of 9.45 from a possible 10.0 indicated a high level of integrity among academics. The self-evaluation results by academics also demonstrated that they have attained integrity at a high level for their generic task, teaching and learning, research and publications and service for community with a mean score between 9.36 and 9.49. The value with the highest mean score was for “service to community”, whereas the lowest was for “research and publication”. These findings show that the university has successfully instilled values of integrity among academicians. Nevertheless, the university must continue to enhance academic integrity by exploring religiosity. Using Google Scholar, a literature search identified an Islam-based academic integrity model to explain the quantitative findings. Finally, a mixed method approach and involving all universities in Malaysia are recommended to further the findings of this study.
Copyright © by EnPress Publisher. All rights reserved.