Accurate temperature control during the induction heating process of carbon fiber reinforced polymer (CFRP) is crucial for the curing effect of the material. This paper first builds a finite element model of induction heating, which combines the actual fiber structure and resin matrix, and systematically analyzes the heating mechanism and temperature field distribution of CFRP during the heating process. Based on the temperature distribution and variation observed in the material heating process, a PID control method optimized by the sparrow search algorithm is proposed, which effectively reduces the temperature overshoot and improves the response speed. The experiment verifies the effectiveness of the algorithm in controlling the temperature of the CFRP plate during the induction heating process. This study provides an effective control strategy and research method to improve the accuracy of temperature control in the induction heating process of CFRP, which helps to improve the results in this field.
The 19th century proved to be one of the most complicated periods in Spanish history for the Spanish Crown, as it faced both internal conflicts—the French War of Independence—and external conflict—the independence of what were its territories in most of America. France did not remain indifferent to this and always had a clear idea of where to draw the boundaries of what “belonged” to it. Thus, amid the wave of independence movements in the Spanish colonies, the French continued to produce rich cartography to establish these boundaries and settle their power over the new nations that were arising after the period of revolutions. The cartography of Rigobert Bonne, the last cartographer of the French king and the Revolution Era, and one of its disciples, Eustache Hérisson, represent the perfect witness to the changes over the borders of the Spanish colonies during the change of the century. This study aims to analyze such cartography, examine the rich toponyms it offers, and examine the changes in the boundaries created over time between both empires. The main cartography we will rely on will be that of Bonne, one of the most important cartographers of the 18th century, and his disciple Hérisson, a geographer engineer, who lived through the onset of the conflicts and always prioritized the French perspective and the interests of their nation.
Introduction, purpose of the study: In Central Europe, in Hungary, the state guarantees access to health care and basic health services partly through the Semmelweis Plan adopted in 2011. The Health Plan aims to optimize and transform the health system. The objectives of hospital integration, as set out in the Plan, started with the state ownership of municipal hospitals in 2012, continued with the launch of integration processes in 2012–2013 and culminated today. The transformation of a health system can have an impact on health services and thus on meeting the needs of the population. We aim to study the effectiveness of integration through access to CT diagnostic testing. Our hypothesis is that integration has resulted in increased access to modern diagnostic services. The specialty under study is computed tomography (CT) diagnostic care. Our research shows that the number of people receiving CT diagnostic care has increased significantly because of integration, which has also brought a number of positive benefits, such as reduced health inequalities, reduced travel time, costs and waiting lists. Test material and method: Our quantitative retrospective research was carried out in the hospital of Kalocsa through document analysis. The research material was comparing two time periods in the Kalocsa site of Bács-Kiskun County, Southern Hungary. The number of patients attending CT examinations by area of duty of care according to postal codes was collected: Pre-integration period 2014.01.01–2017.11.30. (Kalocsa did not have CT equipment, so patients who appeared in Kecskemét Hospital but were under the care of Kalocsa), post-integration period 2017.12.01–2019.12.31. (period after the installation of CT in Kalocsa). The target group of the study consisted of women and men together, aged 0–99 years, who appeared for a CT diagnostic examination. The study sample size was 6721 persons. Linear regression statistics were used to evaluate the results. Based on empirical experience, a SWOT analysis was carried out to further investigate the effectiveness of integration. Results: As a result of the integration, the CT scan machine purchased in the Kalocsa District Hospital has enabled an average of 129.7 patients per month to receive CT scans on site without travelling. The model used is significant, explaining 86% of the change in the number of patients served (F = 43.535; p < 0.001, adjusted R2 = 0.860). The variable of integration in the model is significant, with an average increase in the number of patients served of 129.7 per month (t = 22.686; p < 0.001) following the introduction of CT due to integration. None of the month variables representing seasonal effects were found to be significant, with no seasonal effect on care. The SWOT analysis has clearly identified the strengths, weaknesses, opportunities and threats related to the integration, the main outcome of which is the acquisition of a CT diagnostic tool. Conclusions: Although we only looked at one segment of the evidence for the effectiveness of hospital integration, integration in the study area has had a positive impact on CT availability, reducing disparities in care.
In view of the fact that the convolution neural network segmentation method lacks to capture the global dependency of infected areas in COVID-19 images, which is not conducive to the complete segmentation of scattered lesion areas, this paper proposes a COVID-19 lesion segmentation method UniUNet based on UniFormer with its strong ability to capture global dependency. Firstly, a U-shaped encoder-decoder structure based on UniFormer is designed, which can enhance the cooperation ability of local and global relations. Secondly, Swin spatial pyramid pooling module is introduced to compensate the influence of spatial resolution reduction in the encoder process and generate multi-scale representation. Multi-scale attention gate is introduced at the skip connection to suppress redundant features and enhance important features. Experiment results show that, compared with the other four methods, the proposed model achieves better results in Dice, loU and Recall on COVID-19-CT-Seg and CC-CCIII dataset, and achieves a more complete segmentation of the lesion area.
Earnings disparities in South Africa, and specifically the Eastern Cape region are influenced by a complex interplay of historical, socio-economic, and demographic factors. Despite significant progress since the end of apartheid, persistent disparities in earnings continue to raise questions about the effectiveness of policies aimed at reducing inequality and promoting equitable social system. Individual-level dataset from the 2021 South African general household survey were subjected to exploratory analysis, while Heckman selection model was used to investigate the determinants of earnings disparities in the study area. The results showed that majority of the population are not working for a wage, commission or salary, which also pointed to the gravity of unemployment situation in the area of study. Most of the working population (both male and female) are lowest earners (R ≤ 10,000), and this also cuts across all age-group categories. Majority of working population have no formal education, are drop out, or have less than grade-12 certificate, and very few working populations with higher education status were found in the moderate and relatively high earnings categories. While many of the working population are engaged in the informal sector, those in the formal sector are in the lowest earners group. Compared to any other race, the Black African group constituted the majority of non-wage earners, and most in this group were found in the lowest earners group. Some of the working population who were beneficiaries of social grants and medical aids scheme were found in the lowest, low, and moderate earnings categories. The findings significantly isolated the earnings-effect of age, marital status, gender, race, education, geographic indicators, employment sector, and index of health conditions and disabilities. The study recommends interventions addressing racial, gender, and geographic wage gaps, while also emphasizing the importance of equitable access to education, health infrastructure, and skills development.
Copyright © by EnPress Publisher. All rights reserved.