Objective: As the scale and importance of official development assistance (ODA) continue to grow, the need to enhance the effectiveness of ODA policies has become more critical than ever before. In this context, it is essential to systematically classify recipient countries and establish tailored ODA policies based on these classifications. The objective of this study is to identify an appropriate methodology for categorizing developing countries using specific criteria, and to apply it to actual data, providing valuable insights for donor countries in formulating future ODA policies. Design/Methodology/Approach: The data used in this study are the basic statistics on the Sustainable Development Goals (SDGs) published annually in the SDGs Report. The analytical method employed is decision tree analysis. Results: The results indicate that the 167 countries analyzed were classified into 10 distinct nodes. The study further limited the scope to the five nodes representing the most disadvantaged developing countries and suggested future directions for aid policies for each of these nodes.
The article examines the issues of application and improvement of the methodology for evaluating industrial enterprises as recipients of state support within the framework of the implementation of industrial policy. The authors considered approaches to the content of industrial policy, investigated the factors influencing its efficiency, identified aspects of its imperfections that arise when applying an incomplete list of important parameters of economic development and ambiguity in the interpretation of previously applied estimates. The article presents proposals to improve the methodology for assessing potential recipients of state support based on the development of a comprehensive indicator for assessing enterprises (recipients of support), taking into account not only the classical parameters of the economic efficiency of industrial enterprises applying for state financial assistance, but also such aspects as the development of budgetary funds, belonging to priority sectors of the economy, characteristics of sustainable development and export and innovation potential. Combining the results of a comprehensive assessment of the recipient of state support with a map of the business demography of the territory allows making a decision not only about the fact of support and its efficiency, but also to predict the assessment of the life cycle of the enterprise and its subsequent development.
This study investigated the impact of social media on purchasing decision-making using data from a questionnaire survey of 257 randomly sampled students from the College of Business at Imam Muhammad Ibn Saud Islamic University. The study items were selected from the study community through a random sample, where several (257) students were surveyed. To achieve its objectives, the study follows the descriptive analytical approach in addressing its topic. The questionnaire was adopted as a tool for collecting data. The questionnaire collected data on the independent variable social media—and the dimensions of the dependent variables representing the stages of purchasing decision-making: Feeling the need for the advertised goods, collecting information about alternatives, evaluating available options, buying decisions, and post-purchase evaluation of the purchase decision. Then, the data were analyzed based on regression analysis using SPSS and AMOS. The important findings are summarized below: Social media use is directly related to feeling the need for and searching for information on advertised goods. Social communication and the evaluation of alternatives to advertised goods, in addition to the existence of a moral effect and a direct correlation between social media use and making the purchasing decision for advertised goods. Providing honest, sufficient, and accurate information via social media to the buyer can help them make the purchasing decision.
The study employed a qualitative approach to determine the influence and effectiveness of storytelling in shaping the Alpha generation’s buying decisions and consumption behaviours. The students of the University of Lagos Junior Secondary School were selected for the study. The interview questions were set to focus on factors like experiences, sources of storytelling communication, the outcomes and the affective effects. Twenty-five students were purposively selected out of one hundred and twelve (112) population for the interview based on the conditions for selection. Thematic analysis was used and a total of 244 themes were identified. Four (4) major themes were later identified in thematic synthesis through coding translation. The findings revealed that storytelling is effective and strategic in brands targeted at the Alpha generation, hence, the generation relied on storytelling to choose brands in convenience, impulsive and shopping products, and radio and television were the main sources of storytelling campaigns among the generation. Storytelling wrapped in songs, entertainment, dancing, drama, etc. captivated and influenced the generation, and children used the information from the storytelling campaigns to influence family purchase decisions and parents’ buying decisions and behaviours.
Recent times have seen significant advancements in AI and NLP technologies, poised to revolutionize logistical decision-making across industries. This study investigates integrating ChatGPT, an advanced AI language model, into strategic, tactical, and operational logistics. Examining its applicability, benefits, and limitations, the study delves into ChatGPT’s capacity for strategic logistics planning, facilitating nuanced decision-making through natural language interactions. At the tactical level, it explores ChatGPT’s role in optimizing route planning and enhancing real-time decision support. The operational aspect scrutinizes ChatGPT’s capabilities in micro-level logistics and emergency response. Ethical implications, encompassing data security and human-AI trust dynamics, are also analyzed. This report furnishes valuable insights for the logistics sector, emphasizing AI’s potential in reshaping decision-making while underscoring the necessity for foresight, evaluation, and ethical considerations in AI integration. In this publication, it is assumed that ChatGPT is not entirely reliable for decision-making in the logistics field: at the strategic level, it can be effectively used for “brainstorming” in preparing decisions, but at the tactical and operational level, the depth of the knowledge is not sufficient to make appropriate decisions. Therefore, the answers provided by ChatGPT to the defined logistic tasks are compared with real logistic solutions. The article highlights ChatGPT’s effectiveness at different levels of logistics and clarifies its potential and limitations in the logistics field.
Copyright © by EnPress Publisher. All rights reserved.