Uncontrolled economic development often leads to land degradation, a decline in ecosystem services, and negative impacts on community welfare. This study employs water yield (WY) modeling as a method for environmental management, aiming to provide a comprehensive understanding of the relationship between Land Use Land Cover (LULC), Land Use Intensity (LUI), and WY to support sustainable natural resource management in the Cisadane Watershed, Indonesia. The objectives include: (1) analyzing changes in WY for 2010, 2015, and 2021; (2) predicting WY for 2030 and 2050 under two scenarios—Business as Usual (BAU) and Protected Forest Area (PFA); (3) assessing the impacts of LULC and climate change on WY; and (4) exploring the relationship between LUI and WY. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model calculates actual and predicted WY conditions, while the Coupling Coordination Degree (CCD) analyzes the LULC-WY relationship. Results indicate that the annual WY in 2021 was 215.8 × 108 m³, reflecting a 30.42% increase from 2010. Predictions show an increasing trend in WY under both scenarios for 2030 and 2050 with different magnitudes. Rainfall contributes 88.99% more dominantly to WY than LULC. Additionally, around 50% of districts exhibited unbalanced coordination between LUI and WY in 2010 and 2020. This study reveals the importance of ESs in sustainable watershed management amidst increasing demand for natural resources due to population growth.
Transit-oriented development is a concept that focuses on developing areas in and around transit nodes to create added value. The concept concentrates on integrating mass public transport networks with non-motorized modes of transport, minimizing the usage of motorized vehicles, and fostering the growth of dense, mixed-use areas with medium to high spatial intensity. This research examines the effects of altering the business model to create Transit Oriented Development (TOD) in Jakarta, contrasting it with PT Moda Raya Transports (PT MRT). We collected data by conducting in-depth interviews with experts and distributing questionnaires to seven respondents who work at this We used the Business Model Canvas (BMC) to identify business models and the internal resources needed for the implementation process. process. Therefore, six elements in BMC were used to conduct changes, and based on the results, RBV analysis was pe PT MRT needs to enhance its internal power to a competitive advantage level in order to effectively manage changes. We need to conduct further research on how the business model can influence the creation of transit-oriented development areas.
This study explores the determinants of control loss in eating behaviors, employing decision tree regression analysis on a sample of 558 participants. Guided by Self-Determination Theory, the findings highlight amotivation (β = 0.48, p < 0.001) and external regulation (β = 0.36, p < 0.01) as primary predictors of control loss, with introjected regulation also playing a significant role (β = 0.24, p < 0.05). Consistent with Self-Determination Theory, the results emphasize the critical role of autonomous motivation and its deficits in shaping self-regulation. Physical characteristics, such as age and weight, exhibited limited predictive power (β = 0.12, p = 0.08). The decision tree model demonstrated reliability in explaining eating behavior patterns, achieving an R2 value of 0.39, with a standard deviation of 0.11. These results underline the importance of addressing motivational deficits in designing interventions aimed at improving self-regulation and promoting healthier eating behaviors.
Accurate drug-drug interaction (DDI) prediction is essential to prevent adverse effects, especially with the increased use of multiple medications during the COVID-19 pandemic. Traditional machine learning methods often miss the complex relationships necessary for effective DDI prediction. This study introduces a deep learning-based classification framework to assess adverse effects from interactions between Fluvoxamine and Curcumin. Our model integrates a wide range of drug-related data (e.g., molecular structures, targets, side effects) and synthesizes them into high-level features through a specialized deep neural network (DNN). This approach significantly outperforms traditional classifiers in accuracy, precision, recall, and F1-score. Additionally, our framework enables real-time DDI monitoring, which is particularly valuable in COVID-19 patient care. The model’s success in accurately predicting adverse effects demonstrates the potential of deep learning to enhance drug safety and support personalized medicine, paving the way for safer, data-driven treatment strategies.
Rural tourism, which offers authentic cultural and nature-based experiences, is increasingly recognized as a vital tool for sustainable development. Ethiopia, with its rich rural landscapes and cultural heritage, holds immense potential for rural tourism, but the sector remains underdeveloped. This study assesses the facilitating conditions and challenges of rural tourism in Ethiopia using a mixed-methods approach. Results indicate that Ethiopia’s economic growth, improved rural infrastructure, large rural population, higher ethnic and religious diversity index, and 11 UNESCO World Heritage Sites provide strong foundations for rural tourism. However, significant challenges such as inadequate infrastructure, limited marketing, restricted access to financing, ethnic conflicts, environmental degradation, and insufficient stakeholder cooperation hinder its growth. To address these barriers, the study proposes a model encompassing strategic investments in infrastructure, enhancing marketing and promotion, access to finance initiatives, conflict resolution strategies, sustainable tourism practices, enhancing stakeholder coordination, and supportive policy frameworks. By employing these strategies, Ethiopia can harness the full potential of its rural tourism sector, contributing to economic development and community well-being while promoting cultural preservation and environmental sustainability. Also, the proposed model is highly applicable to other developing economies that share similar contexts. Besides, given the importance of the seven fundamental pillars of the model, it remains relevant across tourism types like coastal destinations.
The objective of this paper is to analyze the impact of infrastructure financing on economic growth in emerging markets through the application of both quantitative and qualitative research methodologies. In this study, the research will employ both primary and secondary data to investigate the impact of different structures of infrastructure financing on the performance of the economy through interviews with the stakeholders and policy documents alongside quantitative data from the World Bank and the IMF. The quantitative analysis employs the econometric models to establish the effect of infrastructure investment on the GDP growth of the selected countries, India, China, Brazil, and Nigeria. Additional secondary qualitative data obtained from interviews with policymakers and financial specialists from Brazil, India, and South Africa offer more practical information regarding the efficiency of the discussed financing approaches. This paper is therefore able to conclude that appropriate management of infrastructure investments, particularly those that involve the PPP, are central to the development of the economy. However, certain drawbacks such as the lack of regularity of data and the disparity in the effectiveness of financing instruments by the regions are pointed out. The research provides policy implications to policymakers and investors who wish to finance infrastructure in the emerging economy to enhance economic growth in the long run.
Copyright © by EnPress Publisher. All rights reserved.