This research study aims 1) to create a structural equation model for sports sponsorship of halal products in Thailand and 2) to examine the direct and indirect influence of variables that are components of the structural equation model for halal products, specifically in the context of becoming a sports sponsorship for halal products in Thailand. The study focused on a sample group of Thai Muslims interested in watching and following the news and participating in Thai sporting events. The researcher chose a sample size of 400 participants from this population, excluding backup data gathering and data analysis, to ensure the questionnaire’s quality and dependability. The results of the data analysis from the structural equation model created show that it is consistent with empirical data. The results of the statistical hypothesis test reveal that the level of religious adherence and the level of awareness of entering into sponsorship have both direct and indirect influences on consumer attitudes and purchase intentions with statistical significance at 0.01. It can also be identified that if a sponsor increases awareness among Muslim viewers through branding or product presentations in events that feature halal symbols or indicate compliance with religious standards, it will lead to a more positive attitude and higher purchase intentions. This insight can be applied to marketing promotion in administrative regions or countries where the majority of the population is Muslim.
In the third national communication submitted by Ecuador, the total greenhouse gases (GHG) emission was calculated at 80,627 GgCO2-eq, considering the country’s commitment to the Framework on Climate Change. In 2018, Ecuador ratified its nationally determined contribution (NDC) to reduce its GHG emissions by 11.87% from the business-as-usual (BAU) scenario by 2025. The macroeconomic impacts of NDC implementation in the energy sector are discussed. A Computable Equilibrium Model applied to Ecuador (CGE_EC) is used by developing scenarios to analyze partial and entry implementation, as well as an alternative scenario. Shocks in exogenous variables are linked to NDC energy initiatives. So, the NDC’s feasibility depends on guaranteeing the consumption of hydropower supply, either through local exports or domestic demand. In the last case, the government’s Energy Efficiency Program (PEC) and electricity transport have important roles, but the high levels of investment required and poor social conditions would impair its implementation. NDC implementation implies a GDP increase and price index decrease due to electricity cost reductions in the productive sector. These conditions depend on demand-supply guarantees, and the opposite case entails negative impacts on the economy. The alternative scenario considers less dependence on the external market, achieving higher GDP, but with only partial fulfillment of the NDC goals.
The research aimed to: 1) analyze components and indicators of digital transformation leadership among school administrators, 2) assess their leadership needs, and 3) develop mechanism models to promote this leadership. A mixed-method approach was applied, involving three sample groups: 8 experts, 406 administrators, and 7 experts. Data collection tools included semi-structured interviews, leadership scales, needs assessments, and focus group discussions, with analysis performed through construct validity testing, needs assessment, and content analysis. The findings revealed: 1) The components and indicators of digital transformation leadership showed structural validity, as confirmed by the model’s alignment with empirical data (Chi-Square = 82.3, df = 65, p = 0.072, CFI = 0.998, TLI = 0.997, RMR = 0.00965, RMSEA = 0.0256). 2) Among the leadership components, “innovative knowledge” ranked highest in need (PNImodified = 0.075), followed by “ideological influence” (0.066), “consideration of individuality” (0.055), “intellectual stimulation” (0.052), and “inspiration” (0.053). 3) Mechanism models for promoting leadership emphasized enhancing these five components to strengthen administrators’ skills in applying technology, managing teaching and development plans, and fostering innovation. Administrators were encouraged to tailor strategies to individual needs, inspire personnel, and create a commitment to organizational change and development. These mechanisms aim to equip administrators to effectively lead transformations, motivate staff, and drive educational institutions to adapt and thrive in evolving environments.
Since the proposal of the low-carbon economy plan, all countries have deeply realized that the economic model of high energy and high emission poses a threat to human life. Therefore, in order to enable the economy to have a longer-term development and comply with international low-carbon policies, enterprises need to speed up the transformation from a high-carbon to a low-carbon economy. Unfortunately, due to the massive volume of data, developing a low-carbon economic enterprise management model might be challenging, and there is no way to get more precise forecast data. This study tackles the challenge of developing a low-carbon enterprise management mode based on the grey digital paradigm, with the aim of finding solutions to these issues. This paper adopts the method of grey digital model, analyzes the strategy of the enterprise to build the model, and makes a comparative experiment on the accuracy and performance of the model in this paper. The results show that the values of MAPE, MSE and MAE of the model in this paper are the lowest. And the r^2 of the model in this paper is also the highest. The MAPE value of the model in this paper is 0.275, the MSE is 0.001, and the MAE is 0.003. These three indicators are much lower than other models, indicating that the model has high prediction accuracy. r2 is 0.9997, which is much higher than other models, indicating that the performance of this model is superior. With the support of this model, the efficiency of building an enterprise model has been effectively improved. As a result, developing an enterprise management model for the low-carbon economy based on the gray numerical model can offer businesses new perspectives into how to quicken the shift to the low-carbon economy.
The effectiveness and efficiency of e-learning system in industry significantly depend on users’ acceptance and adoption. This is specifically determined by external and internal factors represented by subjective norms (SN) and experience (XP), both believed to affect users’ perceived usefulness (PU) and perceived ease of use (PEOU). Users’ acceptance of e-learning system is influenced by the immensity of region, often hampered by inadequate infrastructure support. Therefore, this study aimed to investigate behavioral intention to use e-learning in the Indonesian insurance industry by applying Technology Acceptance Model (TAM). To achieve this objective, Jabotabek and Non-Jabotabek regions were used as moderating variables in all related hypotheses. An online survey was conducted to obtain data from 800 respondents who were Indonesian insurance industry employees. Subsequently, Structural Equation Model (SEM) was used to evaluate the hypotheses, and Multi-Group Analysis (MGA) to examine the role of region. The results showed that out of the seven hypotheses tested, only one was rejected. Furthermore, XP had no significant effect on PU, and the most significant correlation was found between PEOU and PU. In each relationship path model, the role of region (Jabodetabek and Non Jabodetabek) had no significant differences. These results were expected to provide valuable insights into the components of e-learning acceptability for the development of a user-friendly system in the insurance industry.
The fifth-generation technology standard (5G) is the cellular technology standard of this decade and its adoption leaves room for research and disclosure of new insights. 5G demands specific skillsets for the workforce to cope with its unprecedented use cases. The rapid progress of technology in various industries necessitates a constant effort from workers to acquire the latest skills demanded by the tech sector. The successful implementation of 5G hinges on the presence of competent individuals who can propel its progress. Most of the existing works related to 5G explore this technology from a multitude of applied and industrial viewpoints, but very few of them take a rigorous look at the 5G competencies associated with talent development. A competency model will help shape the required educational and training activities for preparing the 5G workforce, thereby improving workforce planning and performance in industrial settings. This study has opted to utilize the Fuzzy Delphi Method (FDM) to investigate and evaluate the perspectives of a group of experts, with the aim of proposing a 5G competency model. Based on the findings of this study, a model consisting of 46 elements under three categories is presented for utilization by any contingent of 5G. This competency model identifies, assesses, and introduces the necessary competencies, knowledge, and attributes for effective performance in a 5G-related job role in an industrial environment, guiding hiring, training, and development. Companies and academic institutions may utilize the suggested competency model in the real world to create job descriptions for 5G positions and to develop curriculum based on competencies. Such a model can be extended beyond the scope of 5G and lay the foundation of future wireless cellular network competency models, such as 6G competency models, by being refined and revised.
Copyright © by EnPress Publisher. All rights reserved.