In the fast-paced modern society, enhancing employees’ professional qualities through training has become crucial for enterprise development. However, training satisfaction remains under-studied, particularly in specialized sectors such as the coal industry. Purpose: This study aims to investigate the impact of personal characteristics, organizational characteristics, and training design on training satisfaction, utilizing Baldwin and Ford’s transfer of training model as the theoretical framework. The study identifies how these factors influence training satisfaction and provides actionable insights for improving training effectiveness in China’s coal industry. Design/Methodology/Approach: A cross-sectional design that allowed the study to capture data at one point in time from a large sample of employees was employed to conduct an online survey involving 251 employees from the Huaibei Mining Group in Anhui Province, China. The survey was administered over three months, capturing a diverse sample with nearly equal gender distribution (51% male, 49% female) and a majority aged between 21 and 40. The participants represented various educational backgrounds, with 52.19% holding an undergraduate degree and most occupying entry-level positions (74.9%), providing a broad workforce representation. Findings: The research indicated that personal traits were the chief predictor of training satisfaction, showing a beta coefficient of 0.585 (95% CI: [0.423, 0.747]). Linear regression modeling indicates that training satisfaction is strongly related to organizational attributes (β = 0.276 with a confidence interval of 95% [0.109, 0.443]). In contrast, training design did not appear to be a strong predictor (β = 0.094, 95% CI: [−0.012, 0.200]). Employee training satisfaction was the principal outcome measure, measured with a 5-point Likert scale. The independent variables covered personal characteristics, organizational characteristics, and training design, all measured through validated items taken from former research. The consistency of the questionnaire from the inside was strong, as Cronbach’s alpha values stood between 0.891 and 0.936. We completed statistical testing using SPSS 27.0, complemented by multiple linear regression, to study the interactions between the variables. Practical implications: This research contributes to the literature by emphasizing the necessity for context-specific training approaches within the coal industry. It highlights the importance of considering personal and organizational characteristics when designing training programs to enhance employee satisfaction. The study suggests further exploration of the multifaceted factors influencing training satisfaction, reinforcing the relevance of Baldwin and Ford’s theoretical model in understanding training effectiveness. Ultimately, the findings provide valuable insights for organizations seeking to improve training outcomes and foster a more engaged workforce. Conclusion: The study concluded that personal and organizational characteristics significantly impact employee training satisfaction in the coal industry, with personal characteristics being the strongest predictor. The beta coefficient for personal characteristics was 0.585, indicating a strong positive relationship. Organizational characteristics also had a positive effect, with a beta coefficient of 0.276. However, training design did not show a significant impact on training satisfaction. These findings highlight the need for coal companies to focus on personal and organizational factors when designing training programs to enhance satisfaction and improve training outcomes.
This study investigates seismic risk and potential impacts of future earthquakes in the Sunda Strait region, known for its susceptibility to significant seismic events due to the subduction of the Indo-Australian Plate beneath the Eurasian Plate. The aim is to assess the likelihood of major earthquakes, estimate their impact, and propose strategies to mitigate associated risks. The research uses historical seismic data and probabilistic models to forecast earthquakes with magnitudes ranging from 6.0 to 8.2 Mw. The Gutenberg-Richter model helps project potential earthquake occurrences and their impacts. The findings suggest that the probability of a major earthquake could occur as early as 2026–2027, with a more significant event estimated to likely occur around 2031. Economic estimates for a 7.8–8.2 Mw earthquake suggest potential damage of up to USD 1.255 billion with significant loss of life. The study identifies key vulnerabilities, such as inadequate building foundations and ineffective disaster management infrastructure, which could worsen the impact of future seismic events. In conclusion, the research highlights the urgent need for comprehensive seismic risk mitigation strategies. Recommendations include reinforcing infrastructure to comply with seismic standards, implementing advanced early warning systems, and enhancing public education on earthquake preparedness. Additionally, government policies must address these issues by increasing funding for disaster management, enforcing building regulations, and incorporating traditional knowledge into construction practices. These measures are essential to reducing future earthquake impacts and improving community resilience.
This study uses a Time-Varying Parameter Stochastic Volatility Vector Autoregression (TVP-SV-VAR) model to conduct an empirical analysis of the dynamic effects of China’s stock market volatility on the agricultural loan market and its channels. The results show that the relationship between stock market and agricultural loan market volatility is time varying and is always positive. The investor sentiment is a major conduit through which the effect takes place. This time-varying effect and transmission mechanism are most apparent between 2011 and 2017 and have since waned and stabilized. These have significant implications for the stable and orderly development of the agricultural loan market, highlighting the importance of the sound financial market system and timely policy, better market monitoring and early warning system and the formation of a mature and sound agricultural credit mechanism.
Floods have always been an unavoidable natural disaster globally. Due to that, many efforts have been taken in order to alleviate the effect, especially in protecting the victims from losing their lives as well as their belongings. This study focuses on ensuring a smooth allocation process for flood victims to the relief centres considering the nature of their location, near the river, inland, and coastal. The finding indicated that a few implications have been highlighted for disaster management, such as changes in flood victim allocation patterns, classification of prone areas based on three areas, identification of most disaster areas, and others. Thus, to enhance the efficiency of allocation and to avoid any bad incidents happening during the flood occurrence, the allocation of flood victims is proposed to be started at a more critical area like the river area and followed by other areas. The finding also indicated that the proposed allocation procedure yielded a slightly lower average travel distance than the existing practice. These findings could also provide valuable information for disaster management in implementing a more efficient allocation procedure during a disaster.
The Science and Technology Innovation Center holds a pivotal position in the national science and technology innovation system, and a scientific evaluation of the “Sci-tech Innovation Center” will guide its construction direction. This study found the advantages and disadvantages of the four cities through comparison; Hence improvement suggestions were proposed for the weaknesses of the four cities. There are two main paths for the government to drive technology innovation: STI (Science and Technology Innovation) mode and DUI (Doing, Using, Interacting) mode. With the aid of the evaluation index system of the Sci-tech Innovation Center, this article uses fuzzy sets, rough sets and fuzzy dynamic clustering methods to comprehensively evaluate the effects of driving technology innovation in the four cities of Beijing, Shanghai, Shenzhen and Guangzhou. The results found that Shenzhen has a significant effect in DUI, and Beijing has a significant effect in STI. The choice of path is related to the abundance of innovation resources.
State-owned enterprises (SOEs) manage significant portion of world economy, including in the developing countries. SOEs are expected to be active and play significant role in improving the country’s economic performance and welfare through enhancing innovation performance. However, closed innovation process and lack of collaboration hinders SOEs to reach satisfying innovation performance level. This paper explores the construction and role of innovation ecosystem in the strategic entrepreneurship process of SOEs, of which is represented by dynamic capability framework, business model innovation, and collaborative advantage. Based on the analysis, this paper concluded that the collaboration between actors in the Innovation Ecosystem (IE) has positive effect to strengthening SOE’s Sensing Capabilities (SC) related to the process of exploring and identifying innovation opportunities. The increase of Sensing Capabilities (SC) will play significant role as input or antecedent on formulating proactive Innovation Strategy (IS) in orchestrating SOE’s innovation process. SOEs which has implementing proactive Innovation Strategy (IS) will be able to build collaboration and finding right Business Model Innovation (BMI). Finally, by building collaboration with other actors through the innovative business model has significant role to increase SOE’s Collaborative Advantage (CA), which considered as a proxy for competitiveness of SOEs.
Copyright © by EnPress Publisher. All rights reserved.