The development of the personal innovative competences in workers is of capital importance for the competitiveness of organizations, where the ability of the employees must respond in an innovative way to diverse situations that arise in specific contexts. Considering this, the question arises: How do innovative employees’ competences affect the sustainable development of Micro, Small and Medium Enterprises (MSMEs)? Therefore, the objective of this work is to present a multi-criteria method based on the Analytic Network Process (ANP), to relate innovative personal competences and the sustainable development of MSMEs. An instrument was applied to groups of experts from 31 Ecuadorian fruit-exporting MSMEs, to develop a multi-criteria decisional network that allowed identifying the innovative personal abilities that have the greatest impact on the sustainable development of these organizations. The results demonstrate the relevance of the elements of innovative personal competencies, with a cumulative participation of 39.15%, Sustainable Export Development with 32.18% and Improvements with 28.66%. It also presents three types of analysis: i) Global to establish the weight of each variable; ii) Influences, to establish solid cause-effect relationships between the variables and iii) Integrated. The most relevant innovative personal competences for sustainable development and improvements for exporting SMEs are teamwork, critical thinking, and creativity within the international context.
This article discusses one of the problems of using digital technologies, namely the complexity of assessing the effectiveness of their implementation. Since the use of digital twins at the enterprises of the fuel and energy complex (FEC) has recently become relevant, the authors have chosen the digital twins technology for consideration in this article. For the successful implementation of digital technologies, the authors propose a system of evaluation indicators that will measure the effectiveness of Digital Twins implementation and determine the benefits obtained. The advantages of digital twins include improved management and monitoring, optimization of production processes, prediction of equipment failures, as well as reduced maintenance costs and increased overall efficiency of FEC systems. As a methodological basis for the study, authors use the system of balanced indicators proposed by R. Kaplan and D. Norton, which served as the basis for the development of a set of performance indicators of the fuel and energy complex enterprise with the introduction of digital twins. As a result of the study, a list of indicators for monitoring the effectiveness of digital twins implementation was determined. The study identifies performance indicators for digital twin implementation, with future research aimed at quantitative assessments. The enterprise can implement a digital twin system with a WACC of 10.99%, payback period of 8.06 years, IRR exceeding the discount rate by 9.07%, a 3.5% reduction in harmful emissions, and a 2.5% efficiency increase.
Global warming is a problem that affects humanity; hence, crisis management in the face of natural events is necessary. The aim of the research was to analyze the passage of Hurricane Otis through Acapulco from the theoretical perspective of crisis management, to understand the socio-environmental, economic, and decision-making challenges. For data collection, content analysis and hemerographic review proved useful, complemented by theoretical contrastation. Findings revealed failures in communication by various government actors; the unprecedented growth of Hurricane Otis led to a flawed crisis management. Among the physical, economic, environmental, and social impacts, the latter stands out due to the humanitarian crisis overflow. It is the first time that Acapulco, despite having a tradition in risk management against hydrometeorological events, faces a hurricane of magnitude five on the Saffir-Simpson scale. Ultimately, the city was unprepared to face a category five hydrometeorological event; institutional responses were overwhelmed by the complexity of the crisis, and the community came together to improve its environment and make it habitable again.
Amidst the COVID-19 pandemic, the imperative of physical distancing has underscored the necessity for telemedicine solutions. Traditionally, telemedicine systems have operated synchronously, requiring scheduled appointments. This study introduces an innovative telemedicine system integrating Artificial Intelligence (AI) to enable asynchronous communication between physicians and patients, eliminating the need for appointments and providing round-the-clock access from any location. The AI-Telemedicine system was developed utilizing Google Sheets and Google Forms. Patients can receive dietary recommendations from the AI acting as the physician and submit self-reports through the system. Physicians have access to patients’ submitted reports and can adjust AI settings to tailor recommendations accordingly. The AI-Telemedicine system for patients requiring daily dietary recommendations has been successfully developed, meeting all nine system requirements. System privacy and security are ensured through user account access controls within Google Sheets. This AI-Telemedicine system facilitates seamless communication between physicians and patients in situations requiring physical distancing, eliminating the need for appointments. Patients have round-the-clock access to the system, with AI serving as a physician surrogate whenever necessary. This system serves as a potential model for future telemedicine solutions.
The use of artificial intelligence (AI) is related to the dynamic development of digital skills. This article focuses on the impact of AI on the work of non-profit organizations that aim to help those around them. Based on 10 semi-structured interviews, it is presented here how it is possible to work with AI and in which areas it can be used—in social marketing, project management, routine bureaucracy. At the same time, workers and volunteers need to be educated in critical and logical thinking more than ever before. These days, AI is becoming more and more present in almost all the activities, bringing several benefits to those making use of it. On the one hand, by using AI in the day-to-day activities, the entities are able to substantially decrease their costs and have the advantage of being able to have, in most cases, a better and faster job done. On the other hand, those individuals that are more creative and more innovative in their line of work should not feel threatened by those situations in which organizations decide to use more AI technologies rather than human beings for the routine activities, since they will get the opportunity to perform tasks that truly require their intellectual capital and decision making abilities.
The telecommunications services market faces essential challenges in an increasingly flexible and customer-adaptable environment. Research has highlighted that the monopolization of the spectrum by one operator reduces competition and negatively impacts users and the general dynamics of the sector. This article aims to present a proposal to predict the number of users, the level of traffic, and the operators’ income in the telecommunications market using artificial intelligence. Deep Learning (DL) is implemented through a Long-Short Term Memory (LSTM) as a prediction technique. The database used corresponds to the users, revenues, and traffic of 15 network operators obtained from the Communications Regulation Commission of the Republic of Colombia. The ability of LSTMs to handle temporal sequences, long-term dependencies, adaptability to changes, and complex data management makes them an excellent strategy for predicting and forecasting the telecom market. Various works involve LSTM and telecommunications. However, many questions remain in prediction. Various strategies can be proposed, and continued research should focus on providing cognitive engines to address further challenges. MATLAB is used for the design and subsequent implementation. The low Root Mean Squared Error (RMSE) values and the acceptable levels of Mean Absolute Percentage Error (MAPE), especially in an environment characterized by high variability in the number of users, support the conclusion that the implemented model exhibits excellent performance in terms of precision in the prediction process in both open-loop and closed-loop.
Copyright © by EnPress Publisher. All rights reserved.