The article examines the modern vectors of implementation of measures to achieve results in the field of Sustainable Development Goals (SDGs), both at the level of national priorities and at the level of Central Asian countries. The purpose of this study is a multidimensional analysis of actions that make it possible to develop solutions to stabilize the environmental situation in Central Asian countries based on global international trends. The scientific novelty of the research lies in the integrated use of thematic modeling methods, as well as sociological surveys used to improve the efficiency of business processes in the field of environmental protection. The methodological basis for conducting a comparative assessment of the impact of environmental policy instruments used on regional development is the concept of sustainable development. In conclusion, conclusions are drawn about the need to develop effective mechanisms for the implementation of environmental policy in the studied countries.
Segregating the scavenging processes from the lubrication methodology is a very effective way of improving two-stroke cycle engine durability. The application of stepped or twin diameter pistons is one such method that has repeatedly shown significantly greater durability over comparable crankcase scavenged engines together with an ability to operate on neat fuel without any added oil. This research study presents the initial results observed from a gasoline/indolene fuelled stepped piston engine ultimately intended for Hybrid Electric Vehicle and/or Range Extender Electric Vehicle application using hydrogen fuelling. Hydrogen fuelling offers the potential to significantly reduce emissions, with near zero emission operation possible, and overcoming the serious issues of range anxiety in modern transport solutions. The low environmental impact is discussed along with results from 1-d Computational Fluid Dynamic modelling. The engine type is a low-cost solution countering the financial challenges of powertrain duplication evident with Hybrid Electric and Range Extender Electric Vehicles.
Unmanned Aerial Vehicles (UAVs) have gained spotlighted attention in the recent past and has experienced exponential advancements. This research focuses on UAV-based data acquisition and processing to generate highly accurate outputs pertaining to orthomosaic imagery, elevation, surface and terrain models. The study addresses the challenges inherent in the generation and analysis of orthomosaic images, particularly the critical need for correction and enhancement to ensure precise application in fields like detailed mapping and continuous monitoring. To achieve superior image quality and precision, the study applies advanced image processing techniques encompassing Fuzzy Logic and edge-detection techniques. The study emphasizes on the necessity of an approach for countering the loss of information while mapping the UAV deliverables. By offering insights into both the challenges and solutions related to orthomosaic image processing, this research lays the groundwork for future applications that promise to further increase the efficiency and effectiveness of UAV-based methods in geomatics, as well as in broader fields such as engineering and environmental management.
In order to understand the finishing effect of Waterborne Acrylic Paint under different painting methods and amount, bamboo-laminated lumber for furniture was coated with waterborne acrylic paint, then the effects of different painting methods and amount on the drying rate, smoothness, hardness, adhesion and wear resistance of the paint film were investigated. Further, the mechanism of film formation was described by thermal property analysis using thermogravimetry and differential scanning calorimeter. The results show that different painting methods have little effect on film properties, the drying time of primer and topcoat are not affected by them, which is 8/8.5 min for primer surface/solid and 6.5/7 min for topcoats. The film surface hardness and adhesion can reach B and 0 grade, the best wear resistance of the film is 51.24 mg·100 r−1 when using one-layer primer one-layer topcoat. Different coating amount has great influence on film properties, the drying speed of the film increases with the increase of the painting amount. The film properties reach the best when the painting amount is 80 g/m2, while too little painting amount leads to the decrease of hardness, and too much leads to the wear resistance weaken. Thermal analysis of the primer and topcoat show that water decomposition occurs at 100 ℃ and thermal decomposition of organic components occur at 350 ℃. Topcoats have better thermal stability than primers higher than that of topcoat, the topcoat displayed better thermal stability than the primer.
The interest in smart grids and new technologies is growing around the world. Countries are investing in the development of new technologies that will help achieve environmental goals, energy supply efficiency, improve energy efficiency and increase consumer involvement in the energy generation. One of such technology is a blockchain. It is believed that the blockchain, combined with a smart grid, provides an opportunity to integrate the activities of all stakeholders, including: generators, distributors and consumers of electricity. The aim of the article is to identify the key research areas discussed by the researchers of both the smart grid and the blockchain issues. An analysis of the Scopus database from 2015 to 2023 was conducted. Using a created bibliometric query, a systematic literature review was conducted. 476 scientific publications relating to the issues addressed were identified. Using the VOSviewer software, a bibliometric analysis was performed using the author’s keywords. The bibliometric maps obtained allowed for the identification of key research areas. The article also presents potential future directions of scientific considerations, which should be focused on the issue of green smart grid and green blockchain. The results presented in the article can inspire researchers looking for research gaps or describing the current state of knowledge in the field of the smart grid and the blockchain issues.
This research intends to find out the compliance acts based on the manufacturing industry of Bangladesh and lead to the development of the integrated theory of compliance model. There are several compliance regulations, that are separately dealt with in any manufacturing organization. These compliance regulations are handled at various ends of the organization making the process quite scattered, time-consuming, and tedious. To fix this problem, the integration of organizational compliance regulations is brought under one platform. Researchers have applied the qualitative approach with multiple case studies methodology scrutinizing the in-depth interviews and transcripts. Furthermore, the NVIVO tool has been used to analyze, where the necessary themes of the Organizational Compliance Regulations are found. Therefore, we have proposed a conceptual framework to inaugurate a standalone combined framework, which is an innovative and novel measure.
Copyright © by EnPress Publisher. All rights reserved.