This study investigates the public’s perceptions of digital innovations in pharmacy, with a focus on health informatics and medication management. Despite the rapid development of these technologies, a comprehensive understanding of how various demographics perceive and interact with them is lacking hence, this research aims to bridge this gap by offering insights into public attitudes and the factors influencing the adoption of digital tools in pharmacy practice, as KSA population and healthcare professionals after Covid-19 has observed the significant potential of digital health. A cross-sectional survey involving 1132 participants was conducted, employing SPSS for data analysis to ensure precise and reliable results. The findings indicate general optimism about the potential of digital innovations to enhance healthcare outcomes but concerns about data privacy and usability significantly affect user acceptance. The researchers recommended tailored educational programs and user-centered design to facilitate the adoption of digital pharmacy innovations. Key contributions include the identification of ‘Ease of Use’ and ‘Data Security and Privacy’ as predominant factors in the adoption of digital health tools.
Clustering technics, like k-means and its extended version, fuzzy c-means clustering (FCM) are useful tools for identifying typical behaviours based on various attitudes and responses to well-formulated questionnaires, such as among forensic populations. As more or less standard questionnaires for analyzing aggressive attitudes do exist in the literature, the application of these clustering methods seems to be rather straightforward. Especially, fuzzy clustering may lead to new recognitions, as human behaviour and communication are full of uncertainties, which often do not have a probabilistic nature. In this paper, the cluster analysis of a closed forensic (inmate) population will be presented. The goal of this study was by applying fuzzy c-means clustering to facilitate the wider possibilities of analysis of aggressive behaviour which is treated as a heterogeneous construct resulting in two main phenotypes, premeditated and impulsive aggression. Understanding motives of aggression helps reconstruct possible events, sequences of events and scenarios related to a certain crime, and ultimately, to prevent further crimes from happening.
The government’s increased cigarette tariff aims to lower smoking rates and avoid adverse impacts. This study’s goal was to offer process innovation for lowering Asian’ smoking behavior. The participants were chosen by stratified random selection from a total of 738 people residing in Pathum Thani Province, Thailand. The instrument was a questionnaire. A software programmer was used to examine descriptive and inferential statistics using EFA and one-way ANOVA techniques. A strategic framework guideline using a SWOT analysis and TOWS matrix to encourage smoking reduction was proposed. The findings revealed two components: smoking behavior change and continues smoking that were based on SWOT analysis and TOWs matrix. There were nine strategies for the excise department to consider for the adjustment of the next policy in terms of reducing the number of smokers. The practical and policy suggestions could help reduce the negative impact of the cigarette industry on public health and increase government revenue while addressing weaknesses and threats in the industry.
The rapid shift to online learning during COVID-19 posed challenges for students. This investigation explored these hurdles and suggested effective solutions using mixed methods. By combining a literature review, interviews, surveys, and the analytic hierarchy process (AHP), the study identified five key challenges: lack of practical experience, disruptions in learning environments, condensed assessments, technology and financial constraints, and health and mental well-being concerns. Notably, it found differences in priorities among students across academic years. Freshmen struggled with the absence of hands-on courses, sophomores with workload demands, and upperclassmen with mental health challenges. The research also discussed preferred strategies for resolution, emphasizing independent learning methods, managing distractions, and adjusting assessments. By providing tailored insights, this study aimed to enhance online learning. Governments and universities should support practical work, prioritize student well-being, improve digital infrastructure, adapt assessments, foster innovation, and ensure resilience.
This research quantitatively examines how online professional development (OPD) affects cognitive development in special education instructors. 100 individuals took part in outpatient department activities for six months, undergoing cognitive ability examinations before and after the intervention. Descriptive statistics, paired samples t-tests, multiple regression analysis, analysis of covariance (ANCOVA), and Pearson correlation coefficients were used to analyze the data. The findings show a significant rise in post-test scores on the Cognitive Abilities Test (CAT) after taking part in the OPD program. Years of experience and education level were important indicators of cognitive progress, emphasizing the significance of individual traits. Moreover, those with greater expertise and advanced levels of education often had better marks on the post-test. The results highlight the significance of cognitive growth as a crucial result of professional development for special education instructors, adding to the existing knowledge base. The research suggests giving priority to cognitive growth in professional development programs, customizing programs to meet individual requirements, and offering continuous support to educators. Future studies should investigate how OPD impacts cognitive development and analyze its lasting consequences on teacher efficacy and student results.
Copyright © by EnPress Publisher. All rights reserved.