The study investigates the impact of artificial intelligence (AI)-powered chatbots on brand dynamics within the banking sector, focusing on the interrelationships between AI implementation and key brand dimensions, including awareness, equity, image, and loyalty. Using structural equation modeling (SEM) analysis on data collected from 520 banking customers, the study tests eight hypotheses to explore the direct and indirect effects of AI-driven interactions on brand development. The findings reveal that AI chatbots significantly enhance brand awareness in banking services, demonstrating moderate positive effects on both brand equity and brand image. Notably, while brand awareness exerts a strong influence on brand image, it does not have a significant direct effect on brand loyalty. Instead, the study shows that brand loyalty is primarily developed through the mediating effects of brand equity and image, with brand image exerting a particularly strong influence on brand equity. For banking practitioners, these insights suggest a need to integrate AI chatbots within a comprehensive brand strategy that merges technological innovation with traditional relationship-building approaches. Limitations of the study and potential directions for future research are also discussed, providing avenues for further exploration of AI’s role in brand management.
Purpose: The purpose of this paper is to explore the impact of Artificial Intelligence on the performance of Indian Banks in terms of financial metrics. The study focused specifically on the NIFTY Bank Index. The paper also advocates that a greater transparency in disclosing AI related information in a Bank’s annual report is required even if it is voluntary. Design/Methodology/Approach: The paper uses a mixed method approach where quantitative and qualitative analysis is combined. A dynamic panel data model is used to understand the impact of AI of Return on Equity (RoE) of 12 Indian Banks in the NIFTY Bank Index over a five-year period. In addition to that, Content analysis of annual reports of banks was conducted to examine AI related disclosure and transparency. Findings: The paper highlights that the integration of Artificial Intelligence (AI) significantly influences the financial performance of sample banks of India. Return on Equity the specific parameter positively influenced with adoption of AI. The profitability of banks is positively impacted by reduced errors and improved operational efficiency. The content analysis of annual reports of the banks indicates different approach for AI disclosure where some banks give detailed information and some are not transparent about AI initiatives. The findings suggest that a higher level of transparency could enhance confidence of all stakeholders. Theoretical Implications: The positive relation between adoption of AI and financial performance, specifically ROE, gives a foundation for academic research to explore the dynamics of emerging technology and financial systems. The study can be extended to explore the impact on other performance indicators in different sectors. Practical Implications: The findings of this study emphasize the importance of transparent AI related disclosures. A detailed reporting about integration of AI helps in enhanced stakeholders’ confidence in case of banking industry. The regulatory framework of banks may also consider making mandatory AI disclosure practices to ensure due accountability to maximize the benefits of AI in banking.
The objective of this paper is to analyze the impact of infrastructure financing on economic growth in emerging markets through the application of both quantitative and qualitative research methodologies. In this study, the research will employ both primary and secondary data to investigate the impact of different structures of infrastructure financing on the performance of the economy through interviews with the stakeholders and policy documents alongside quantitative data from the World Bank and the IMF. The quantitative analysis employs the econometric models to establish the effect of infrastructure investment on the GDP growth of the selected countries, India, China, Brazil, and Nigeria. Additional secondary qualitative data obtained from interviews with policymakers and financial specialists from Brazil, India, and South Africa offer more practical information regarding the efficiency of the discussed financing approaches. This paper is therefore able to conclude that appropriate management of infrastructure investments, particularly those that involve the PPP, are central to the development of the economy. However, certain drawbacks such as the lack of regularity of data and the disparity in the effectiveness of financing instruments by the regions are pointed out. The research provides policy implications to policymakers and investors who wish to finance infrastructure in the emerging economy to enhance economic growth in the long run.
This study aims to develop a robust prioritization model for municipal projects in the Holy Metropolitan Municipality (Makkah) to address the challenges of aligning short-term and long-term objectives. The research explores How multi-criteria decision-making (MCDM) techniques can prioritize municipal projects effectively while ensuring alignment with strategic goals and local needs. The methodology employs the analytic hierarchy process (AHP) and exploratory factor analysis (EFA) to ensure methodological rigor and data adequacy. Data were collected from key stakeholders, including municipal planners and community representatives, to enhance transparency and reliability. The model’s validity was assessed through latent factor analysis, confirming the relevance of identified criteria and factors. Results indicate that flood prevention projects are the highest priority (0.4246), followed by road projects (0.3532), park construction (0.1026), utility projects (0.0776), and digital transformation (0.0416). The study highlights that certain factors are critical for evaluating and prioritizing municipal projects. “Capacity and Demand” emerged as the most influential factor (0.5643), followed by “Strategic Alignment” (0.2013), “Project Interdependence” (0.1088), “Increasing Investment” (0.0950), and “Risk” (0.0306). These findings are significant as they offer a structured, data-driven approach to decision-making aligned with Saudi Vision 2030. The proposed model optimizes resource allocation and project selection, representing a pioneering effort to develop the first prioritization framework specifically tailored to Makkah’s unique municipal needs. Notably, this is the first study to establish a prioritization method specifically for Makkah’s municipal projects, providing valuable contributions to the field.
In response to the challenges of climate change, this study explores the use of moringa pod powder as reinforcement in the manufacture of compressed earth bricks to promote sustainable building materials. The objective is to evaluate the impact of African locust bean pod powder on the mechanical properties of the bricks. Two types of soils from Togo were characterized according to geotechnical standards. Mixtures containing 8% African locust bean pod powder at various particle sizes (0.08 mm, 2 mm, and between 2 and 5 mm) were formulated and tested for compression and tensile strength. The results show that the addition of African locust bean pod reduces the mechanical strength of the bricks compared to the control sample without pods, with strengths ranging from 0.697 to 0.767 MPa, compared to 0.967 to 1.060 MPa for the control. However, the best performances for the mixtures were obtained with a fineness of less than 2 mm. This decrease in performance is attributed to several factors, including inadequate water content and suboptimal preparation and compaction methods. Optimizing formulation parameters is necessary to maximize the effectiveness of African locust bean pods. This work highlights the valorization of agro-industrial waste, paving the way for a better understanding of bio-based materials and future research for sustainable construction.
This study conducts a systematic review to explore the applications of Artificial Intelligence (AI) in mobile learning to support indigenous communities in Malaysia. It also examines the AI techniques used more broadly in education. The main objectives of this research are to investigate the role of Artificial Intelligence (AI) in support the mobile learning and education and provide a taxonomy that shows the stages of process that used in this research and presents the main AI applications that used in mobile learning and education. To identify relevant studies, four reputable databases—ScienceDirect, Web of Science, IEEE Xplore, and Scopus—were systematically searched using predetermined inclusion/exclusion criteria. This screening process resulted in 50 studies which were further classified into groups: AI Technologies (19 studies), Machine Learning (11), Deep Learning (8), Chatbots/ChatGPT/WeChat (4), and Other (8). The results were analyzed taxonomically to provide a structured framework for understanding the diverse applications of AI in mobile learning and education. This review summarizes current research and organizes it into a taxonomy that reveals trends and techniques in using AI to support mobile learning, particularly for indigenous groups in Malaysia.
Copyright © by EnPress Publisher. All rights reserved.