Species of the Moraceae family are of great economic, medicinal and ecological importance in Amazonia. However, there are few studies on their diversity and population dynamics in residual forests. The objective was to determine the composition, structure and ecological importance of Moraceae in a residual forest. The applied method was descriptive and consisted of establishing 16 plots of 20 m × 50 m (0.10 ha), in a residual forest of the Alexánder von Humboldt substation of the National Institute of Agrarian Innovation-INIA, Pucallpa, department of Ucayali, where individuals of arboreal or hemi-epiphytic habit, with DBH ≥ 2.50 cm, were evaluated. The floristic composition was represented by 33 species, distributed in 12 genera; five species not recorded for Ucayali were found. Structurally, the family was represented by 138 individuals/ha with a horizontal distribution similar to an irregular inverted “J”. However, there were different horizontal structures among species. It was determined that 85% of the species were in diameter class I (2.50 to 9.99 cm), being the most abundant Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr. (41.88 individuals/ha); and the most dominant were Brosimum utile (Kunth) Oken (1.71 m2∕ha) and Brosimum alicastrum subsp. bolivarense (Pittier) C.C.Berg (0.90 m2/ha). Likewise, P. laevis and B. utile were the most ecologically important. The information from the present research will allow the establishment of a baseline, which can be used to propose the management of Moraceae in residual forests in the same study area.
Objective: The influence of climate on forest stands cannot be ignored, but most of the previous forest stand growth models were constructed under the presumption of invariant climate and could not estimate the stand growth under climate change. The model was constructed to provide a theoretical basis for forest operators to take reasonable management measures for fir under the influence of climate. Methods: Based on the survey data of 638 cedar plantation plots in Hunan Province, the optimal base model was selected from four biologically significant alternative stand basal area models, and the significant climate factors without serious covariance were selected by multiple stepwise regression analysis. The optimal form of random effects was determined, and then a model with climatic effects was constructed for the cross-sectional growth of fir plantations. Results: Richards formula is the optimal form of the basic model of stand basal area growth. The coefficient of adjustment was 0.8355; the average summer maximum temperature and the water vapor loss in Hargreaves climate affected the maximum and rate of fir stand stand growth respectively, and were negatively correlated with the stand growth. The adjusted coefficient of determination of the fir stand area break model with climate effects was 0.8921, the root mean square error (RMSE) was 3.0792, and the mean relative error absolute value (MARE) was 9.9011; compared with the optimal base model, improved by 6.77%, RMSE decreased by 19.04%, and MARE decreased by 15.95%. Conclusion: The construction of the stand cross-sectional area model with climate effects indicates that climate has a significant influence on stand growth, which supports the rationality of considering climate factors in the growth model, and it is important for the regional stand growth harvest and management of cedar while improving the accuracy and applicability of the model.
Forest fire, as a discontinuous ecological factor of forest, causes the changes of carbon storage and carbon distribution in forest ecosystem, and affects the process of forest succession and national carbon capacity. Taking the burned land with different forest fire interference intensity as the research object, using the comparison method of adjacent sample plots, and taking the combination of field investigation sampling and indoor test analysis as the main means, this paper studies the influence of different forest fire interference intensity on the carbon pool of forest ecosystem and the change and spatial distribution pattern of ecosystem carbon density, and discusses the influence mechanism of forest fire interference on ecosystem carbon density and distribution pattern. The results showed that forest fire disturbance reduced the carbon density of vegetation (P < 0.05). The carbon density of vegetation in the light, moderate and high forest fire disturbance sample plots were 67.88, 35.68 and 15.50 t∙hm-2, which decreased by 15.86%, 55.78% and 80.79% respectively compared with the control group. In the light, moderate and high forest fire disturbance sample plots, the carbon density of litter was 1.43, 0.94 and 0.81 t∙hm-2, which decreased by 28.14%, 52.76% and 59.30% respectively compared with the control group. The soil organic carbon density of the sample plots with different forest fire disturbance intensity is lower than that of the control group, and the reduction degree gradually decreases with the increase of soil profile depth. The soil organic carbon density of the sample plots with light, moderate and high forest fire disturbance is 103.30, 84.33 and 70.04 t∙hm-2 respectively, which is 11.670%, 27.899% and 40.11% lower than that of the control group respectively; the carbon density of forest ecosystem was 172.61, 120.95 and 86.35 t∙hm-2 after light, moderate and high forest fire disturbance, which decreased by 13.53%, 39.41% and 56.74% respectively compared with the control group; forest fire disturbance reduced the carbon density of eucalyptus forest, which showed a law of carbon density decreasing with the increase of forest fire disturbance intensity. Compared with the control group, the effect of light forest fire disturbance intensity on the carbon density of eucalyptus forest was not significant (P > 0.05), while the effect of moderate and high forest fire disturbance intensity on the carbon density of eucalyptus forest was significant (P < 0.05).
The wave effect and the shyness phenomenon in Alnus acuminata (Kunth) are crown parameters rarely studied, but important in the quality of the wood of standing trees, therefore, a morphometric modeling of the crowns of Alnus acuminata in homogeneous forests in the Sierra Norte de Puebla was carried out. In 20 rectangular sites of 1,000 m2, the following were evaluated: total height (TA), normal diameter (ND), crown diameter (CD) and crown cover (CC). The Kruskal Wallis test was applied to data that did not meet the assumption of normality; for those that did, analysis of variance (ANOVA) was used, with Tukey mean comparison tests (α ≤ 0.05). The forest value index was 14.99, so its two-dimensional structure is normal based on DN, AT and CC. Its average slenderness index was 93.52, which makes the tree not very stable to mechanical damage. The life-space index was 38.92, which is high indicating that trees with low intraspecific competition developed better. At the canopy level, a pattern following an upward, oscillatory and constant wave effect was observed in groups of 10 trees. The shyness phenomenon showed an average crack opening of 27.39 cm between canopies, so this phenomenon is well defined for the species. It is concluded that in the crowns of Alnus acuminata, the wave effect is observed as a consequence of inequality in the acquisition of resources, and one way to minimize this inequality is through the phenomenon of botanical shyness.
This paper qualitatively analyzes the connotation of woodland welfare and the changes of woodland welfare that may be caused by the transfer of the right to use, and interprets the welfare improvement caused by the transfer of the right to use of woodland in the ideal state by using the relevant theories and models of microeconomics. Based on the prospect theory and psychological account theory of behavioral economics, this paper analyzes the reasons why the transfer of forestland use right has not been carried out on a large scale in China.
This work was carried out with the purpose of generating ecological and silvicultural information oriented to sustainable management. The horizontal structure was evaluated using the importance value index of Curtis and Macintosh, the vertical structure using Finol’s methodology. Through the sociological position index, the percentage natural regeneration and the extended importance value index were estimated in order to infer the permanence of the forest ecosystem. The floristic composition was represented by species of the families Anacardiaceae, Apocynaceae, Fabaceae, Santalaceae, Rhamnaceae, Sapotaceae, Simarubaceae, Ulmaceae, Zygophyllaceae, Capparidaceae, Borraginaceae and Achatocarpaceae. In the horizontal structure, the species with the highest rank was Acacia praecox, followed in order of importance by Schinopsis balansae, Aspidosperma quebracho blanco and Prosopis kuntzei. According to sociological position, Acacia praecox was the most representative species, followed by Patagonula americana, Schinus longifolius, Proposis kuntzei and Aspidosperma quebracho blanco. The species with the best regeneration values were Achatocarpus nigricans and Acacia praecox in the shrub layer and Patagonula americana in the tree layer. The extended importance index consolidated the category of Acacia praecox in the community and gave a better category to Schinopsis balansae, Aspidosperma quebracho blanco, Prosopis kuntzei and Patagonula americana.
Copyright © by EnPress Publisher. All rights reserved.