Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
This research focused on the design and implementation of the flipped classroom approach for higher mathematics courses in medical colleges. Out of 120 students, 60 were assigned to the experimental group and 60 to the control group. In the continuous assessment, which included homework and quizzes, the average score of the experimental group was 85.5 ± 5.5, while that of the control group was 75.2 ± 8.1 (P < 0.05). For the final examination, the average score in the experimental group was 88.3 ± 6.2, compared to 78.1 ± 7.3 in the control group (P < 0.01). The participation rate of students in the experimental group was 80.5%, significantly higher than the 50.3% in the control group (P < 0.001). Regarding autonomous learning ability, the experimental group spent an average of 3.2 hours per week on self-study, compared to 1.5 hours in the control group (P < 0.005). Other potential evaluation indicators could involve the percentage of students achieving high scores (90% or above) in problem-solving tasks (25.8% in the experimental group vs. 10.3% in the control group, P < 0.05), and the improvement in retention of key concepts after one month (70.2% in the experimental group vs. 40.5% in the control group, P < 0.01). In conclusion, the flipped classroom approach holds substantial promise in elevating the learning efficacy of higher mathematics courses within medical colleges, offering valuable insights for educational innovation and improvement.
This research aims to develop a Synergy Learning Model in the context of science learning. This research was conducted at Islamic Junior High School, Madrasah Tsanawiyah Negeri 2 Medan, involving 64 students of Grade 7 as the research subject. The method used in this research refers to the development research approach (R&D). In collecting the data, the research employed test and non-test techniques. The results prove that the Synergy learning model developed is effective in improving student learning outcomes. This is evident through the t-test statistical test where the t-count of 4.26 is higher than the t-table of 1.99. In addition, the level of practicality with a score of 3.39 is categorized as practical. This learning model emphasizes the learning process that supports the development of science skills and develops students' competencies in planning, collaborating, and critically reflecting. The findings of this study contribute to pedagogical practices and literature in the field of science learning.
Comparative studies of national values are becoming increasingly important in the context of contemporary globalization processes. An essential condition for the shaping of national values in learners is the enrichment of pedagogical technology with components of digital technology. Both qualitative and quantitative approaches were used in the current study. The purpose of this research is to examine the efficacy of mobile learning in shaping the national values of prospective teachers. The experiment included 180 participants. Diagnostics of the levels of national values formation in the initial stage confirmed the assumption about the low formation of national values among teacher candidates and, consequently, the need for targeted work on their formation. This study demonstrates that significant advances in students’ national values have occurred following the introduction and testing of mobile learning with experimental group (EG) participants to shape national values. The data from this study can serve as the basis for creating strategies for shaping the national values of learners in universities and as a methodological basis for adapting mobile learning for the shaping of national values.
The objective of this work was to analyze the effect of the use of ChatGPT in the teaching-learning process of scientific research in engineering. Artificial intelligence (AI) is a topic of great interest in higher education, as it combines hardware, software and programming languages to implement deep learning procedures. We focused on a specific course on scientific research in engineering, in which we measured the competencies, expressed in terms of the indicators, mastery, comprehension and synthesis capacity, in students who decided to use or not ChatGPT for the development and fulfillment of their activities. The data were processed through the statistical T-Student test and box-and-whisker plots were constructed. The results show that students’ reliance on ChatGPT limits their engagement in acquiring knowledge related to scientific research. This research presents evidence indicating that engineering science research students rely on ChatGPT to replace their academic work and consequently, they do not act dynamically in the teaching-learning process, assuming a static role.
Copyright © by EnPress Publisher. All rights reserved.