This study investigates the evolution of monetary policy in Ghana and explores the potential of Central Bank Digital Currencies (CBDCs), specifically the e-Cedi, as a tool to enhance financial inclusion and modernize the country’s financial system. Ghana’s monetary policy framework has undergone significant transformations since the establishment of the Bank of Ghana in 1957, with notable achievements in stabilizing the economy and managing inflation. However, large segments of the population, particularly in rural areas, remain unbanked or underbanked, highlighting the limitations of traditional monetary tools. The introduction of the e-Cedi presents an opportunity to bridge these gaps by providing secure, efficient, and accessible financial services to underserved communities. The study employs a qualitative research design, integrating historical analysis, case studies, and thematic analysis to assess the potential benefits and challenges of CBDCs in Ghana. Key findings indicate that while the e-Cedi could significantly enhance financial inclusion, challenges related to technological infrastructure, cybersecurity, and public trust must be addressed. The study concludes that a balanced approach, which prioritizes digital infrastructure development, strong cybersecurity measures, and collaboration with financial institutions, is essential for maximizing the potential of CBDCs in Ghana. Recommendations for future research include a deeper exploration of the impact of CBDCs on financial stability and further analysis of rural adoption barriers.
Conversion of the ocean’s vertical thermal energy gradient to electricity via OTEC has been demonstrated at small scales over the past century. It represents one of the planet’s most significant (and growing) potential energy sources. As described here, all living organisms need to derive energy from their environment, which heretofore has been given scant serious consideration. A 7th Law of Thermodynamics would complete the suite of thermodynamic laws, unifying them into a universal solution for climate change. 90% of the warming heat going into the oceans is a reasonably recoverable reserve accessible with existing technology and existing economic circumstances. The stratified heat of the ocean’s tropical surface invites work production in accordance with the second law of thermodynamics with minimal environmental disruption. TG is the OTEC improvement that allows for producing two and a half times more energy. It is an endothermic energy reserve that obtains energy from the environment, thereby negating the production of waste heat. This likewise reduces the cost of energy and everything that relies on its consumption. The oceans have a wealth of dissolved minerals and metals that can be sourced for a renewable energy transition and for energy carriers that can deliver ocean-derived power to the land. At scale, 31,000 one-gigawatt (1-GW) TG plants are estimated to displace about 0.9 W/m2 of average global surface heat into deep water, from where, at a depth of 1000 m, unconverted heat diffuses back to the surface and is available for recycling.
The efficiencies and performance of gas turbine cycles are highly dependent on parameters such as the turbine inlet temperature (TIT), compressor inlet temperature (T1), and pressure ratio (Rc). This study analyzed the effects of these parameters on the energy efficiency, exergy efficiency, and specific fuel consumption (SFC) of a simple gas turbine cycle. The analysis found that increasing the TIT leads to higher efficiencies and lower SFC, while increasing the To or Rc results in lower efficiencies and higher SFC. For a TIT of 1400 ℃, T1 of 20 ℃, and Rc of 8, the energy and exergy efficiencies were 32.75% and 30.9%, respectively, with an SFC of 187.9 g/kWh. However, for a TIT of 900 ℃, T1 of 30 ℃, and Rc of 30, the energy and exergy efficiencies dropped to 13.18% and 12.44%, respectively, while the SFC increased to 570.3 g/kWh. The results show that there are optimal combinations of TIT, To, and Rc that maximize performance for a given application. Designers must consider trade-offs between efficiency, emissions, cost, and other factors to optimize gas turbine cycles. Overall, this study provides data and insights to improve the design and operation of simple gas turbine cycles.
This paper examines the detrimental impact of rapid inflation on the quality of private education in developing countries. By focusing on the financial challenges faced by private schools, the study highlights the tension between education policy and economic realities. While private schools often attract parents with smaller class sizes and specialized programs, the core motivation lies in investing in children’s future through quality education. However, this study demonstrates how inflation can cripple this sector. The case of Turkey exemplifies this challenge. Post-pandemic inflation created a financial stranglehold on private schools, as rising costs made it difficult to adjust teacher salaries. This, in turn, led to teacher demotivation and a mass exodus, ultimately compromising educational quality. Furthermore, government interventions aimed at protecting parents from high tuition fees, through limitations on fee increases, inadvertently sacrificed the very quality they sought to safeguard. The paper concludes by advocating for alternative policy approaches that prioritize direct support for education system during economic downturns. Such measures are crucial for ensuring a strong and resilient education system that benefits all stakeholders, including parents, students, and the nation as a whole.
Scientists have harnessed the diverse capabilities of nanofluids to solve a variety of engineering and scientific problems due to high-temperature predictions. The contribution of nanoparticles is often discussed in thermal devices, chemical reactions, automobile engines, fusion processes, energy results, and many industrial systems based on unique heat transfer results. Examining bioconvection in non-Newtonian nanofluids reveals diverse applications in advanced fields such as biotechnology, biomechanics, microbiology, computational biology, and medicine. This study investigates the enhancement of heat transfer with the impact of magnetic forces on a linearly stretched surface, examining the two-dimensional Darcy-Forchheimer flow of nanofluids based on blood. The research explores the influence of velocity, temperature, concentration, and microorganism profile on fluid flow assumptions. This investigation utilizes blood as the primary fluid for nanofluids, introducing nanoparticles like zinc oxide and titanium dioxide (. The study aims to explore their interactions and potential applications in the field of biomedicine. In order to streamline the complex scheme of partial differential equations (PDEs), boundary layer assumptions are employed. Through appropriate transformations, the governing partial differential equations (PDEs) and their associated boundary conditions are transformed into a dimensionless representation. By employing a local non-similarity technique with a second-degree truncation and utilizing MATLAB’s built-in finite difference code (bvp4c), the modified model’s outcomes are obtained. Once the calculated results and published results are satisfactorily aligned, graphical representations are used to illustrate and analyze how changing variables affect the fluid flow characteristics problems under consideration. In order to visualize the numerical variations of the drag coefficient and the Nusselt number, tables have been specially designed. Velocity profile of -blood and -blood decreases for increasing values of and , while temperature profile increases for increasing values of and . Concentration profile decreases for increasing values of , and microorganism profile increases for increasing values of . For rising values of and the drag coefficient increases and the Nusselt number decreases for rising values of and The model introduces a novel approach by conducting a non-similar analysis of the Darchy-Forchheimer bioconvection flow of a two-dimensional blood-based nanofluid in the presence of a magnetic field.
Financial markets have adopted measures aiming at strengthening insurance industry and digital financial assets. Efforts have also been made to strengthen the financial sector and expand lending opportunities in times of economic turmoil. The role of the central banks as a mega-regulator have played a crucial role in implementing coordinated policies and improving the stability of the financial sector. This review paper analyses 100 papers and proposes recommendations for policy makers. The results confirm the financial sector has shown positive performance indicators, and the capital market has become increasingly important along with non-credit financial institutions. However, the growing number of first-time investors in the capital market requires a renewed focus on consumer protection and financial literacy. In addition, the development of digital technologies has changed the landscape of financial services, forcing financial institutions to fight for continued customer loyalty.
Copyright © by EnPress Publisher. All rights reserved.