This paper aims to explore how to build a sustainable peace and development model for China’s peacekeeping efforts through the application of data-driven methods from UN Global Pulse. UN Global Pulse is a United Nations agency dedicated to using big data and artificial intelligence technologies to address global challenges. In this paper, we will introduce the working principles of UN Global Pulse and its application in the fields of peacekeeping and development. Then, we will discuss the current situation of China’s participation in peacekeeping operations and how data-driven methods can help China play a greater role in peacekeeping tasks. Finally, we will propose a sustainable peace and development model that combines data-driven methods with the advantages of China’s peacekeeping efforts to achieve long-term peace and development goals.
In the context of big data, the teaching of financial accounting for vocational undergraduate students needs to be continuously optimized and innovated. This article provides a brief analysis of the current situation of financial accounting teaching for vocational undergraduate students. It also analyzes the phenomena of outdated teaching concepts, outdated teaching content, and unreasonable teaching objectives in the current teaching of financial accounting for vocational undergraduate students. It proposes the idea of innovating teaching concepts in current teaching work, clarifying teaching objectives, integrating flipped classroom reform teaching mode, and introducing project-based teaching method to improve teaching efficiency, so as to achieve more efficient teaching guidance for students.
To evaluate the efficiency of decision-making units, researchers continually develop models simulating the production process of organizations. This study formulates a network model integrating undesirable outputs to measure the efficiency of Vietnam’s banking industry. Employing methodologies from the data envelopment analysis (DEA) approach, the efficiency scores for these banks are subsequently computed and comparatively analyzed. The empirical results indicate that the incorporation of undesirable output variables in the efficiency evaluation model leads to significantly lower efficiency scores compared to the conventional DEA model. In practical terms, the study unveils a deterioration in the efficiency of banking operations in Vietnam during the post-Covid era, primarily attributed to deficiencies in credit risk management. These findings contribute to heightening awareness among bank managers regarding the pivotal importance of credit management activities.
This paper utilizes an advanced Network Data Envelopment Analysis (DEA) model to examine the impact of mobile payment on the efficiency of Taiwan banking industry. Inheriting the literature, we separate the banking operation process into two stages, namely profitability and marketability. Mobile payment is then considered as the core factor in the second stage. Our paper discovers network DEA model can effectively enhance the analysis of banking industry’s efficiency, and mobile payment has a notable impact on Taiwan banking industry. Regarding the profitability stage, there is only one efficient bank in 2019 and 2022, respectively. These banks also perform better in terms of “mobile payment production”. In the marketability stage, there is also only one bank in 2021 and one bank in 2022, that can reach to unique efficiency score. This indicates many banks attempt to increase earnings per share through investing in mobile payment services. However, the achievement still needs more wait. This leads to the fact that no bank can reach the ultimate overall efficiency. Within our sample, we also find that regarding promoting mobile payment services, Private Banks outperform Government Banks.
Under the background of the development of the network information age, the current Internet industry has obtained more development opportunities, but it has also brought corresponding challenges in the process of wide application. In the development and construction of modernization, society pays more attention to the supervision and determination of the characteristics of online public opinion. From the perspective of the current characteristics of network public opinion, because social information is more extensive and involves many fields, network public opinion has a high degree of complexity and diffusion. Therefore, it is necessary to strengthen the analysis and application of relevant data mining systems in order to achieve efficient management of network public opinion. The key to the disadvantage of the traditional excavation of public opinion communication characteristics lies in the lag of the excavation process, and it is difficult to deal with malignant public opinion in a timely and effective manner. Therefore, in order to truly solve the lagging problem of public opinion data dissemination feature mining technology, it is necessary to strengthen the application of artificial intelligence technology in it.
In the dynamic landscape of modern education, it is essential to understand and recognize the psychological habits that underpin students’ learning processes. These habits play a crucial role in shaping students’ learning outcomes, motivation, and overall educational experiences. This paper shifts the focus towards a more nuanced exploration of these psychological habits in learning, particularly among secondary school students. We propose an innovative assessment model that integrates multimodal data analysis with the quality function deployment theory and the subjective-objective assignment method. This model employs the G-1-entropy value method for an objective evaluation of students’ psychological learning habits. The G-1-entropy method stands out for its comprehensive, objective, and practical approach, offering valuable insights into students’ learning behaviors. By applying this method to assess the psychological aspects of learning, this study contributes to educational research and informs educational reforms. It provides a robust framework for understanding students’ learning habits, thereby aiding in the development of targeted educational strategies. The findings of this study offer strategic directions for educational management, teacher training, and curriculum development. This research not only advances theoretical knowledge in the field of educational psychology but also has practical implications for enhancing the quality of education. It serves as a scientific foundation for educators, administrators, and policymakers in shaping effective educational practices.
Copyright © by EnPress Publisher. All rights reserved.