The implementation of data interoperability in healthcare relies heavily on policy frameworks. However, many hospitals across South Africa are struggling to integrate data interoperability between systems, due to insufficient policy frameworks. There is a notable awareness that existing policies do not provide clear actionable direction for interoperability implementation in hospitals. This study aims to develop a policy framework for integrating data interoperability in public hospitals in Gauteng Province, South Africa. The study employed a conceptual framework grounded in institutional theory, which provided a lens to understand policies for interoperability. This study employed a convergence mixed method research design. Data were collected through an online questionnaire and semi-structured interviews. The study comprised 144 clinical and administrative personnel and 16 managers. Data were analyzed through descriptive and thematic analysis. The results show evidence of coercive isomorphism that public hospitals lack cohesive policies that facilitate data interoperability. Key barriers to establishing policy framework include inadequate funding, ambiguous guidelines, weak governance, and conflicting interests among stakeholders. The study developed a policy to facilitate the integration of data interoperability in hospitals. This study underscores the critical need for the South African government, legislators, practitioners, and policymakers to consult and involve external stakeholders in the policy-making processes.
This study explores the integration of data mining, customer relationship management (CRM), and strategic management to enhance the understanding of customer behavior and drive revenue growth. The main goal is the use of application of data mining techniques in customer analytics, focusing on the Extended RFM (Recency, Frequency, Monetary Value and count day) model within the context of online retailing. The Extended RFM model enhances traditional RFM analysis by incorporating customer demographics and psychographics to segment customers more effectively based on their purchasing patterns. The study further investigates the integration of the BCG (Boston Consulting Group) matrix with the Extended RFM model to provide a strategic view of customer purchase behavior in product portfolio management. By analyzing online retail customer data, this research identifies distinct customer segments and their preferences, which can inform targeted marketing strategies and personalized customer experiences. The integration of the BCG matrix allows for a nuanced understanding of which segments are inclined to purchase from different categories such as “stars” or “cash cows,” enabling businesses to align marketing efforts with customer tendencies. The findings suggest that leveraging the Extended RFM model in conjunction with the BCG matrix can lead to increased customer satisfaction, loyalty, and informed decision-making for product development and resource allocation, thereby driving growth in the competitive online retail sector. The findings are expected to contribute to the field of Infrastructure Finance by providing actionable insights for firms to refine their strategic policies in CRM.
Bibliometric analysis is a commonly used tool to assess scientific collaborations within the researchers, community, institution, regions and countries. The analysis of publication records can provide a wealth of information about scientific collaboration, including the number of publications, the impact of the publications, and the areas of research where collaborations are most common. By providing detailed information on the patterns and trends in scientific collaboration, these tools can help to inform policy decisions and promote the development of effective strategies to support and enhance scientific collaborations between countries. This study aimed to analyze and visualize the scientific collaboration between Japan and Russia, using bibliometric analysis of collaborative publications from the Web of Science (WoS) database. The analysis utilized the bibliometrix package within the R statistical program. The analysis covered a period of two decades, from 2000 to 2021. The results showed a slight decrease in co-authored publications, with an annual growth rate of −1.26%. The keywords and thematic trends analysis confirmed that physics is the most co-authored field between the two countries. The study also analyzed the collaboration network and research funding sources. Overall, the study provides valuable insights into the current state of scientific collaboration between Japan and Russia. The study also highlights the importance of research funding sources in promoting and sustaining scientific cooperation between countries. The analysis suggests that more efforts in government funding are needed to increase collaboration between the two countries in various fields.
Smart cities incorporate fundamental aspects such as sustainability and citizens’ well-being. Therefore, the objective of this study is to analyze the feasibility and effectiveness of the implementation of an evaluation model of the transformation processes towards smart cities as a strategy to improve the state of the transformation processes in Lima, Peru. The research is descriptive and basic. A questionnaire was administered to 80 municipal officials in Lima, focusing on the variable “smart cities evaluation model”, covering three key dimensions: open data, smart public transport and energy efficiency, with a total of 15 questions and the variable “state of the transformation processes”, analysed through the dimensions of educational level of the population and municipal budget, with 10 questions. The results revealed that 48% expressed a gap in terms of the availability and quality of accessible information. 53% argued that stronger energy conservation and sustainability strategies need to be implemented. In addition, 53% felt that the education level needs to focus on improving local education systems. In conclusion, transformation processes drive economic, social and environmental development, improving the quality of life and promoting equality among citizens. This study contributes to a broader understanding of how to address these challenges in order to build more sustainable and liveable cities in the future.
By reviewing US state-level panel data on infrastructure spending and on per capita income inequality from 1950 to 2010, this paper sets out to test whether an empirical link exists between infrastructure and inequality. Panel regressions with fixed effects show that an increase in the growth rate of spending on highways and higher education in a given decade correlates negatively with Gini indices at the end of the decade, thus suggesting a causal effect from growth in infrastructure spending to a reduction in inequality through better access to education and opportunities for employment. More significantly, this relationship is more pronounced with inequality at the bottom 40 percent of the income distribution. In addition, infrastructure expenditures on highways are shown to be more effective at reducing inequality. By carrying out a counterfactual experiment, the results show that those US states with a significantly higher bottom Gini coefficient in 2010 had underinvested in infrastructure during the previous decade. From a policy-making perspective, new innovations in finance for infrastructure investments are developed, for the US, other industrially advanced countries and also for developing economies.
In today’s fast-paced digital world, generative AI, especially OpenAI’s ChatGPT, has become a game-changing technology with significant effects on education. This study examines public sentiment and discourse surrounding ChatGPT’s role in higher education, as reflected on social media platform X (formerly Twitter). Employing a mixed-methods approach, we conducted a thematic analysis using Leximancer and Voyant Tools and sentiment analysis with SentiStrength on a dataset of 18,763 tweets, subsequently narrowed to 5655 through cleaning and preprocessing. Our findings identified five primary themes: Authenticity, Integrity, Creativity, Productivity, and Research. The sentiment analysis revealed that 46.6% of the tweets expressed positive sentiment, 38.5% were neutral, and 14.8% were negative. The results highlight a general openness to integrating AI in educational contexts, tempered by concerns about academic integrity and ethical considerations. This study underscores the need for ongoing dialogue and ethical frameworks to responsibly navigate AI’s incorporation into education. The insights gained provide a foundation for future research and policy-making, aiming to enhance learning outcomes while safeguarding academic values. Limitations include the focus on English-language tweets, suggesting future research should encompass a broader linguistic and platform scope to capture diverse global perspectives.
Copyright © by EnPress Publisher. All rights reserved.