Identify and diagnosis of homogenous units and separating them and eventually planning separately for each unit are considered the most principled way to manage units of forests and creating these trustable maps of forest’s types, plays important role in making optimum decisions for managing forest ecosystems in wide areas. Field method of circulation forest and Parcel explore to determine type of forest require to spend cost and much time. In recent years, providing these maps by using digital classification of remote sensing’s data has been noticed. The important tip to create these units is scale of map. To manage more accurate, it needs larger scale and more accurate maps. Purpose of this research is comparing observed classification of methods to recognize and determine type of forest by using data of Land Cover of Modis satellite with 1 kilometer resolution and on images of OLI sensor of LANDSAT satellite with 30 kilometers resolution by using vegetation indicators and also timely PCA and to create larger scale, better and more accurate resolution maps of homogenous units of forest. Eventually by using of verification, the best method was obtained to classify forest in Golestan province’s forest located on north-east of country.
The challenge of rural electrification has become more challenging today than ever before. Grid-connected and off-grid microgrid systems are playing a very important role in this problem. Examining each component’s ideal size, facility system reactions, and other microgrid analyses, this paper proposes the design and implementation of an off-grid hybrid microgrid in Chittagong and Faridpur with various load dispatch strategies. The hybrid microgrids with a load of 23.31 kW and the following five dispatch algorithms have been optimized: (i) load following, (ii) HOMER predictive, (iii) combined dispatch, (iv) generator order, and (v) cycle charging dispatch approach. The proposed microgrids have been optimized to reduce the net present cost, CO2 emissions, and levelized cost of energy. All five dispatch strategies for the two microgrids have been analyzed in HOMER Pro. Power system reactions and feasibility analyses of microgrids have been performed using ETAP simulation software. For both the considered locations, the results propound that load-following is the outperforming approach, which has the lowest energy cost of $0.1728/kWh, operational cost of $2944.13, present cost of $127,528.10, and CO2 emission of 2746 kg/year for the Chittagong microgrid and the lowest energy cost of $0.2030/kWh, operating cost of $3530.34, present cost of 149,287.30, and CO2 emission of 3256 kg/year for the Faridpur microgrid with a steady reaction of the power system.
Objective: To determine the presence of bacteria by means of microbiological analysis on the surfaces contacted by the operator during the taking and processing of intraoral radiographs at different times of the day in the Oral Radiology Service of the UPCH. Materials and methods: Nine surfaces of the oral radiology service were sampled. The samples were taken at two times by the same investigator; at the beginning and the end of the activities in the service, the surfaces were swabbed with Trypticase Soy Broth (TSB). The samples were inoculated and incubated in three culture media (Plate Count Agar, Lamb’s Blood Agar and Cetrimide Agar). Then the respective Colony Forming Unit (CFU) count was performed and Gram staining was also performed. Results: A high concentration of bacteria (4180 CFU/mL) and fungi was found in the oral radiology service. Gram-positive cocci were the most frequently found microorganisms and gram-negative bacilli were less frequently found. Conclusions: There is a high contamination of bacteria in the oral radiology service. When the activities are completed, the number of bacteria decreases, but the variety of bacteria increases.
Climate and vegetation are variables of the physical space that have a dynamic and interdependent relationship. Flora modifies climatic elements and gives rise to a microclimate whose characterization is a function of regional climatic conditions and vegetation structure. The objective of this work was to compare the climatic variations (inside and outside) of the Caldén Forest in the Parque Luro Provincial Reserve. Temperature, relative humidity, wind speed, wind direction and precipitation data from two meteorological stations for 2012 were analyzed and statistically compared. The influence of the forest on climatic parameters was demonstrated and it was found that the greatest variations were in wind speed, daily temperature and precipitation.
This research study explores the addition of chromium (Cr6+) ions as a nucleating agent in the alumino-silicate-glass (ASG) system (i.e., Al2O3-SiO2-MgO-B2O3-K2O-F). The important feature of this study is the induction of nucleation/crystallization in the base glass matrix on addition of Cr6+ content under annealing heat treatment (600 ± 10 °C) only. The melt-quenched glass is found to be amorphous, which in the presence of Cr6+ ions became crystalline with a predominant crystalline phase, Spinel (MgCr2O4). Microstructural experiment revealed the development of 200–500 nm crystallite particles in Cr6+-doped glass-ceramic matrix, and such type microstructure governed the mechanical properties. The machinability of the Cr-doped glass-ceramic was thereby higher compared to base alumino-silicate glass (ASG). From the nano-indentation experiment, the Young’s modulus was estimated 25(±10) GPa for base glass and increased to 894(±21) GPa for Cr-doped glass ceramics. Similarly, the microhardness for the base glass was 0.6(±0.5) GPa (nano-indentation measurements) and 3.63(±0.18) GPa (micro-indentation measurements). And that found increased to 8.4(±2.3) (nano-indentation measurements) and 3.94(±0.20) GPa (micro-indentation measurements) for Cr-containing glass ceramic.
This work is a part of research on the microstructure and mechanical properties of Cr-Ni-Si steels after various thermal treatments [1, 2]. The need to minimize damage and losses caused by emerging failures in complex engineering facilities such as nuclear, thermal and hydroelectric power stations, and gas and oil pipelines necessitates the creation of materials of high strength, plasticity, welding and high rigidity.
Copyright © by EnPress Publisher. All rights reserved.