Analysis of the factors influencing the price of carbon emissions trading in China and its time-varying characteristics is essential for the smooth operation of the carbon trading system. We analyse the time-varying effects of public concern, degree of carbon regulation, crude oil price, international carbon price and interest rate level on China’s carbon price through SV-TVP-VAR model. Among them, the quantification of public concern and the degree of carbon emission regulation is based on microblog text and government decisions. The results show that all the factors influencing carbon price are significantly time-varying, with the shocks of each factor on carbon price rising before 2019 and turning significantly thereafter. The short-term shock effect of each factor is more significant compared to the medium- and long-term, and the effect almost disappears at a lag of six months. Thanks to public environmental awareness, low-carbon awareness and the progress of carbon market management mechanisms, public concern has had the most significant impact on carbon price since 2019. With the promulgation of relevant management measures for the carbon market, relevant regulations on carbon emission accounting, financing constraints, and carbon emission quota allocation for emission-controlled enterprises have become increasingly mature, and carbon price signals are more sensitive to market information. The above findings provide substantial empirical evidence for all stakeholders in the market, who need to recognize that the impact of non-structural factors on the price of carbon varies over time. Government intervention also serves as a key aspect of carbon emission control and requires the introduction of relevant constraints and incentives. In particular, emission-controlling firms need to focus on the policy direction of the carbon market, and focus on the impact of Internet public opinion on business production while reducing carbon allowance demand and energy dependence.
Low levels of financial literacy cause people to have lower savings rates, higher transaction costs, larger debts and the loans acquisition with higher interest rates, therefore it becomes relevant to analyze the determinants of financial literacy. The aim of this research is to identify whether there is an association between the financial literacy level and sociodemographic characteristics. The Mexican Petroleum Company (Pemex) employees is the population analyzed. Pemex is the state-owned oil and natural gas producer, transporter, refiner and marketer in Mexico. A non-probabilistic convenience sampling was performed and 404 responses were obtained. The analysis of data was carried out with the Bayesian method. The results show that there is an association between Pemex employees’ level of financial literacy and their level of education, income, age and type of retirement saving. No association was found between their level of financial literacy and gender, marital status and whether or not they have children.
This study meticulously explores the crucial elements precipitating corporate failures in Taiwan during the decade from 1999 to 2009. It proposes a new methodology, combining ANOVA and tuning the parameters of the classification so that its functional form describes the data best. Our analysis reveals the ten paramount factors, including Return on Capital ROA(C) before interest and depreciation, debt ratio percentage, consistent EPS across the last four seasons, Retained Earnings to Total Assets, Working Capital to Total Assets, dependency on borrowing, ratio of Current Liability to Assets, Net Value Per Share (B), the ratio of Working Capital to Equity, and the Liability-Assets Flag. This dual approach enables a more precise identification of the most instrumental variables in leading Taiwanese firms to bankruptcy based only on financial rather than including corporate governance variable. By employing a classification methodology adept at addressing class imbalance, we substantiate the significant influence these factors had on the incidence of bankruptcy among Taiwanese companies that rely solely on financial parameters. Thus, our methodology streamlines variable selection from 95 to 10 critical factors, improving bankruptcy prediction accuracy and outperforming Liang’s 2016 results.
Performance Management is a major concern to various stakeholders in Education System, it is considered to be key driver to improve school effectiveness and learning quality. However, the complexity of education Systems, has made it challenging to apply an effective PM model. This study paper introduces a maturity model with six dimensions, fifteen Capability Areas and forty-two Best-Practices to assess education systems’ organizational capacity for performance management. It provides deep insights into their structural and functional characteristics and serves as a framework for decision-makers to identify and implement missing practices while enhancing existing ones. The maturity model was developed following the Design Science Research methodology to ensure both rigor and relevance. A bottom-up approach guided its design, integrating insights from extensive literature reviews and lessons learned from benchmark countries. The evaluation process employed a qualitative approach, using focus groups with a carefully selected cohort of academics, experts, and practitioners. The Moroccan case study serves as part of the “Reflection and Learning” phase, providing an initial test for the model and paving the way for further empirical research. Future studies will aim to test, refine, and extend the model, facilitating its application across diverse educational contexts.
Social media has become one of the primary sources of communication, information, entertainment, and learning for users. Children gain several benefits as social media helps them acquire formal and informal learning opportunities. This research also examined the effect of social media on formal and informal learning among school-level children in Ajman, United Arab Emirates (UAE), moderated by social integrative and personal integrative needs. Data was gathered by using structured questionnaires, which were distributed among a sample of 364 children. Results revealed that social media significantly affects Informal and formal learning among children, indicating its usefulness in child education and development. The results also indicated a significant moderation of social integrative needs on social media’s direct effect on informal learning, indicating the relevant needs as an important motivating factor. However, the moderation of personal integrative needs on social media’s direct effect on formal learning remained insignificant. Overall, this research highlighted the role of social media in providing learning opportunities for children in the UAE. It is concluded that children actively seek gratifications from social media, shaping their learning within structured educational contexts in their daily lives. Through the lens of UGT, certain needs play a critical role in strengthening the gratification process, affecting how children derive learning advantages from their interactions on social media platforms. Finally, implications and limitations are discussed accordingly.
To address the escalating online romance scams within telecom fraud, we developed an Adaptive Random Forest Light Gradient Boosting (ARFLGB)-XGBoost early warning system. Our method involves compiling detailed Online Romance Scams (ORS) incident data into a 24-variable dataset, categorized to analyze feature importance with Random Forest and LightGBM models. An innovative adaptive algorithm, the Adaptive Random Forest Light Gradient Boosting, optimizes these features for integration with XGBoost, enhancing early Online romance scams threat detection. Our model showed significant performance improvements over traditional models, with accuracy gains of 3.9%, a 12.5% increase in precision, recall improvement by 5%, an F1 score increase by 5.6%, and a 5.2% increase in Area Under the Curve (AUC). This research highlights the essential role of advanced fraud detection in preserving communication network integrity, contributing to a stable economy and public safety, with implications for policymakers and industry in advancing secure communication infrastructure.
Copyright © by EnPress Publisher. All rights reserved.