The Agriculture Trading Platform (ATP) represents a significant innovation in the realm of agricultural trade in Malaysia. This web-based platform is designed to address the prevalent inefficiencies and lack of transparency in the current agricultural trading environment. By centralizing real-time data on agricultural production, consumption, and pricing, ATP provides a comprehensive dashboard that facilitates data-driven decision-making for all stakeholders in the agricultural supply chain. The platform employs advanced deep learning algorithms, including Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNN), to forecast market trends and consumption patterns. These predictive capabilities enable producers to optimize their market strategies, negotiate better prices, and access broader markets, thereby enhancing the overall efficiency and transparency of agricultural trading in Malaysia. The ATP’s user-friendly interface and robust analytical tools have the potential to revolutionize the agricultural sector by empowering farmers, reducing reliance on intermediaries, and fostering a more equitable trading environment.
Finding the right technique to optimize a complex problem is not an easy task. There are hundreds of methods, especially in the field of metaheuristics suitable for solving NP-hard problems. Most metaheuristic research is characterized by developing a new algorithm for a task, modifying or improving an existing technique. The overall rate of reuse of metaheuristics is small. Many problems in the field of logistics are complex and NP-hard, so metaheuristics can adequately solve them. The purpose of this paper is to promote more frequent reuse of algorithms in the field of logistics. For this, a framework is presented, where tasks are analyzed and categorized in a new way in terms of variables or based on the type of task. A lot of emphasis is placed on whether the nature of a task is discrete or continuous. Metaheuristics are also analyzed from a new approach: the focus of the study is that, based on literature, an algorithm has already effectively solved mostly discrete or continuous problems. An algorithm is not modified and adapted to a problem, but methods that provide a possible good solution for a task type are collected. A kind of reverse optimization is presented, which can help the reuse and industrial application of metaheuristics. The paper also contributes to providing proof of the difficulties in the applicability of metaheuristics. The revealed research difficulties can help improve the quality of the field and, by initiating many additional research questions, it can improve the real application of metaheuristic algorithms to specific problems. The paper helps with decision support in logistics in the selection of applied optimization methods. We tested the effectiveness of the selection method on a specific task, and it was proven that the functional structure can help the decision when choosing the appropriate algorithm.
While the healthcare landscape continues to evolve, rural-based hospitals face unique challenges in providing quality patient care amidst resource constraints and geographical isolation. This study evaluates the impact of big data analytics in rural-based hospitals in relation to service delivery and shaping future policies. Evaluating the impact of big data analytics in rural-based hospitals will assist in discovering the benefits and challenges pertinent to this hospital. The study employs a positivist paradigm to quantitatively analyze collected data from rural-based hospital professionals from the Information Technology (IT) departments. Through a comprehensive evaluation of big data analytics, this study seeks to provide valuable insights into the feasibility, infrastructure, policies, development, benefits and challenges associated with incorporating big data analytics into rural-based hospitals for day-to-day operations. The findings are expected to contribute to the ongoing discourse on healthcare innovation, particularly in rural-based hospitals and inform strategies for optimizing the implementation and use of big data analytics to improve patient care, decision-making, operations and healthcare sustainability in rural-based hospitals.
Copyright © by EnPress Publisher. All rights reserved.