The study examines the impact of various theories on the reflection and transmission phenomena caused by obliquely incident longitudinal and transverse waves at the interface between a continuously elastic solid half-space and a thermoelastic half-space, using multiple thermoelastic models. Numerical calculations reveal that the thermoelastic medium supports one transmitted transverse wave and two transmitted longitudinal waves. The modulus of amplitude proportions is analyzed as a function of the angle of incidence, showing distinct variations across the studied models. Energy ratios, derived from wave amplitudes under consistent surface boundary conditions for copper, are computed and compared across angles of incidence. The results demonstrate that the total energy ratio consistently sums to one, validating energy conservation principles. Graphical comparisons of amplitude proportions and energy ratios for SV and P waves across different models illustrate significant differences in wave behavior, emphasizing the influence of thermoelastic properties on wave transmission and reflection.
To achieve the Paris Agreement’s temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
China established pilot carbon markets in 2013. In 2020, it set targets for carbon peaking in 2030 and carbon neutrality by 2050. China’s national carbon market officially commenced operations in 2021. Based on the national market and seven pilot markets, this study established the factors influencing carbon trading prices by examining market participants, macroeconomics, energy prices, carbon prices in other markets, etc. Asymmetrical development among the seven pilot cities, for which the study employed a mixed-effects model, was the primary factor impacting carbon prices. The carbon prices in the pilot cities cannot be extrapolated to the entire country. In the national carbon market, where the study employed a multiple regression lag model, the SSE index was positively correlated with carbon prices, whereas the Dow Jones index had no significant effect on carbon prices in terms of macroeconomics. Coal and natural gas prices were negatively correlated with carbon prices, whereas oil prices were positively correlated with energy prices. The EU market prices have a positive correlation with prices in other markets. The significance of this study is that it covers the largest national Emissions Trading System (ETS) in the world and allows for comparing the characteristics of the Chinese market with those of other ETS markets. Additional studies, including more sectors, should be conducted as China’s ETS coverage increases.
Copyright © by EnPress Publisher. All rights reserved.