Introduction: the presence of anti-CCP is an important prognostic tool for rheumatoid arthritis (RA), but its relationship with the activity of the disease and functional capacity is still being investigated. Objectives: to study the relationship between anti-CCP and the indices of disease activity, functional capacity and structural damage, by means of conventional radiography (CR) and magnetic resonance imaging (MRI), in stabilized RA. Methods: cross-sectional study of RA patients with one to 10 years of disease. The participants were subjected to clinical evaluation with anti-CCP screening. Disease activity was assessed by means of the Clinical Disease Activity Index (CDAI) and functional capacity by means of the Health Assessment Questionnaire (HAQ). CR was analyzed by the Sharp van der Heijde index (SmvH) and MRI by the Rheumatoid Arthritis Magnetic Resonance Image Scoring System (RAMRIS). Results: 56 patients were evaluated, with median (IIq) of 55 (47.5–60.0) years, 50 (89.3%) were female among whom 37 (66.1%) were positive for anti-CCP. The median (IIq) of CDAI, HAQ, SmvH and RAMRIS were 14.75 (5.42–24.97), 1.06 (0.28–1.75), 2 (0–8) and 15 (7–35), respectively. There was no association between anti-CCP and CDAI, HAQ, SmvH and RAMRIS. Conclusion: our results did not establish the association of anti-CCP with the severity of the disease. So far, we cannot corroborate the anti-CCP as a prognostic tool in RA established.
Based on the characteristics of liquid lens sparse aperture imaging, a radiative multiplet array structure is proposed; a simplified model of sparse aperture imaging is given, and the analytical expression of the modulation transfer function is derived from the optical pupil function of the multiplet array structure; the specific distribution form of this multiplet array structure is given, and the structure parameters are approximated by the dimensionless method; the two types of radiative multiplet array structures are discussed, and the filling factor, redundancy, modulation transfer function and other characteristic parameters are calculated. The physical phenomena exhibited by the parametric scan are discussed, and the structural features and imaging characteristics of these two arrays are compared. The results show that the type-II structure with larger actual equivalent aperture and actual cutoff frequency and lower redundancy is selected when the average modulation transfer function and the IF characteristics of the modulation transfer function of the two structures are close to each other; the type-II structure has certain advantages in imaging; the conclusion is suitable for arbitrary enclosing circle size because the liquid lens-based multiplet array structure adopts dimensionless approximation parameters; compared with the composite toroidal structure, the radiative multiplet mirror structure has a larger actual cut-off frequency and actual equivalent aperture when the filling factor is the same.
Objective: To study the changes of growth, physiological and absorption characteristics of Pinus bungeana under ozone (O3) stress, to elucidate the correlations among the indicators, and to determine its degree of response to O3. Methods: The growth, physiological characteristics and O3 uptake capacity of Pinus bungeana seedlings were measured in an open-top O3 fumigation manual control experiment with three concentration gradients (NF: normal atmospheric O3 concentration, NF40: normal atmospheric O3 concentration plus 40 nmlol/mol; NF80: normal atmospheric O3 concentration plus 80 nmol/mol), and the relationships between the characteristics of Pinus bungeana under different O3 concentrations were investigated with correlation analysis, redundancy analysis and analysis of variance. Results: (1) Plant height growth (ΔH), diameter growth at 50 cm (ΔDBH), stomatal size (S), stomatal density (M), stomatal opening (K), stomatal conductance (Gs), net photosynthetic rate (Pn), transpiration rate (Et), water use efficiency (WUE), maximum photochemical efficiency (Fv/Fm), chlorophyll content (CHL), whole tree water consumption (W), and O3 uptake rate () all decreased with the increase of O3 concentration; while intercellular CO2 concentration () and relative conductivity (L) increased with the increase of O3 concentration; (2) growth indicators of Pinus bungeana under O3 stress (ΔH, ΔDBH) were the most correlated with O3 uptake status (, W), followed by photosynthetic indicators (, WUE, ,, ) and growth indicators (ΔH, ΔDBH) and stomatal characteristics (K, M, S) under O3 stress, some physiological indicators (L, ) were relatively weakly correlated with photosynthesis (, WUE,,, ) and stomatal (K, M, S); (3) all the indicators of Pinus bungeana were significantly different under O3 treatments of NF and NF80 (P < 0.05), ΔH, ΔDBH, M, CHL, , , W and were most significantly different under NF and NF40 treatments, and K, S, WUE, , , , L were more significantly different under NF40 and NF80 treatments. Conclusion: The experiment proved that the growth of Pinus bungeana was slowed, photosynthetic capacity was reduced, and the absorption capacity of O3 was further reduced by long-term exposure to high concentration of O3. The growth of Pinus bungeana was most correlated with the changes of O3 absorption characteristics, and the stomatal characteristics were most correlated with photosynthetic physiological characteristics, and the reduction of photosynthetic capacity etc. further led to the curtailment of its growth.
Aiming at the problem of incompatibility of biomass models of forest organs, taking Chinese fir in Fujian Jiangle State-owned Forest Farm as the research object, based on selecting the optimal independent model of each organ, the biomass compatibility model of Chinese fir was established with a three-level joint control scheme. The results show that the compatibility equation system based on the whole plant biomass can effectively solve the problem of incompatibility in the whole plant biomass, each sub-biomass and between sub-biomass. Besides, except for the leaf biomass model, all other biomass models have good fitting effect, which is of great significance to the guidance of the analysis of local Chinese fir biomass.
In order to maximize the potential energy utilization of agricultural and forestry waste and sludge, the experimental research on co-pyrolysis was carried out for two kinds of sludge (urban industrial sludge, paper sludge) and a typical biomass straw. The results show that adding biomass can effectively improve sludge pyrolysis characteristics; biomass straw and sludge, there are complex interactive effects between components in the co-pyrolysis process, and the characteristic parameters show nonlinear changes. When industrial sludge is mixed with straw, with the increase of straw content, the initial temperature of pyrolysis gradually decreases, the termination temperature increases, the peak of pyrolysis reaction rate and the corresponding temperature gradually increase, and the pyrolysis index gradually increases; when paper sludge is mixed with straw, with the increase of straw content, the initial temperature of pyrolysis gradually decreases, the termination temperature increases, the peak of pyrolysis reaction rate gradually increases, while the peak corresponding temperature gradually decreases, and the pyrolysis index gradually decreases. Combined with characteristic parameters and reaction kinetics analysis, it is suggested that the straw mixing proportion should be controlled at about 25% during the co-pyrolysis of industrial sludge and straw. During the co-pyrolysis of paper sludge and straw, it is suggested to control the straw blending ratio at about 75%.
Copyright © by EnPress Publisher. All rights reserved.