The study examines the impact of COVID-19 on the economies of Gulf Corporation Council (GCC) member states. The event study methodology was used to analyze Cumulative Abnormal Return (CAR) of GCC member states’ stock indexes: Kuwait Stock Exchange Index (KSE), Dubai Financial Market Index (DFM), Saudi Arabia Tadawul Index (TASI), Qatar Exchange Index (QE), Bahrain All Share Index (BHB), Oman’s Muscat Stock Exchange Index (MSM), Abu Dhabi Stock Exchange Index (ADX) while the S&P GCC Composite Index was used as a reference. Data obtained from 28 July 2019 to 27 July 2020, and 1 March 2020, designated as the event day, abnormal returns (AR) and cumulative average abnormal returns (CAARs) were examined across various time intervals. The findings reveal significant market reactions to the pandemic, characterized by fluctuations in abnormal returns and CAARs. Statistically significant abnormal returns and CAARs during certain time periods underscore the dynamic nature of market responses to the COVID-19 event. These results provide valuable insights for policymakers and market participants seeking to understand and navigate the economic implications of the pandemic on GCC economies. The study recommends that other GCC states, particularly Oman, consider the policies undertaken by Qatar, UAE, and Saudi Arabia, to avoid a long economic crisis.
The Malaysian dilemma presents a complex challenge in the wake of the COVID-19 pandemic, requiring a comprehensive statistical analysis for the formulation of a sustainable economic framework. This study delves into the multifaceted aspects of reconstructing Malaysia’s economy post-COVID-19, employing a data-driven approach to navigate the intricacies of the nation’s economic landscape. The research focuses on key statistical indicators, including GDP growth, unemployment rates, and inflation, to assess the immediate and long-term impacts of the pandemic. Additionally, it examines the effectiveness of government interventions and stimulus packages in mitigating economic downturns and fostering recovery. A comparative analysis with pre-pandemic data provides valuable insights into the extent of economic resilience and identifies sectors that require targeted support for sustained growth. Furthermore, the study explores the role of technology and digital transformation in building a resilient economy, considering the accelerated shift towards remote work and digital transactions during the pandemic. The analysis incorporates data on technological adoption rates, digital infrastructure development, and innovation ecosystems to gauge their contributions to economic sustainability. Addressing the Malaysian Dilemma also involves an examination of social and environmental dimensions. The study investigates the impact of economic policies on income distribution, social equity, and environmental sustainability, aiming to achieve sustainable economic growth. The study contributes a nuanced analysis to guide policymakers and stakeholders in constructing a sustainable post-COVID-19 economy in Malaysia.
This paper mainly uses the idea of pedigree clustering analysis, gray prediction and principal component analysis. The clustering analysis model, GM (1,1) model and principal component analysis model were established by using SPSS software to analyze the correlation matrices and principal component analysis. MATLAB software was used to calculate the correlation matrices. In January, The difference in price changes of major food prices in cities is calculated, and had forecasted the various food prices in June 2016. For the first issue, the main food is classified and the data are processed. After that, the SPSS software is used to classify the 27 kinds of food into four categories by using the pedigree cluster analysis model and the system clustering. The four categories are made by EXCEL. The price of food changes over time with a line chart that analyzes the characteristics of food price volatility. For the second issue, the gray prediction model is established based on the food classification of each kind of food price. First, the original data is cumulated, test and processed, so that the data have a strong regularity, and then establish a gray differential equation, and then use MATLAB software to solve the model. And then the residual test and post-check test, have C <0.35, the prediction accuracy is better. Finally, predict the price trend in June 2016 through the function. For the third issue, we analyzed the main components of 27 kinds of food types by celery, octopus, chicken (white striped chicken), duck and Chinese cabbage by using the data of principal given and analyzed by principal component analysis. It can be detected by measuring a small amount of food, this predict CPI value relatively accurate. Through the study of the characteristics of the region, select Shanghai and Shenyang, by looking for the relevant CPI and food price data, using spss software, principal component analysis, the impact of the CPI on several types of food, and then calculated by matlab algorithm weight, and then the data obtained by the analysis and comparison, different regions should be selected for different types of food for testing.
Copyright © by EnPress Publisher. All rights reserved.