This paper provides a comprehensive review of SURF (speeded up robust features) feature descriptor, commonly used technique for image feature extraction. The SURF algorithm has obtained significant popularity because to its robustness, efficiency, and invariance to various image transformations. In this paper, an in-depth analysis of the underlying principles of SURF, its key components, and its use in computer vision tasks such as object recognition, image matching, and 3D reconstruction are proposed. Furthermore, we discuss recent advancements and variations of the SURF algorithm and compare it with other popular feature descriptors. Through this review, the aim is to provide a clear understanding of the SURF feature descriptor and its significance in the area of computer vision.
In this paper, a new compound health drink of aloe and balsam pear was developed by using high-quality aloe and balsam pear as main raw materials and white granulated sugar and citric acid as auxiliary materials. The effects of the addition of aloe juice, balsam pear juice, white granulated sugar and citric acid on the sensory quality of the beverage were investigated and analyzed. On this basis, the orthogonal test was conducted to determine the best formula for the beverage. The results showed that the order of the factors affecting the quality of the finished product was the addition of aloe juice > white granulated sugar > citric acid > balsam pear juice; the optimal formula is 24% aloe juice, 10% balsam pear juice, 7% white granulated sugar and 0.09% citric acid and the resulting beverage was bright in color, sweet and sour with good flavor, and its physical, chemical and health indicators meet the national standards.
Integrated Resource Management plays a crucial role in sustainable development by ensuring efficient allocation and utilization of natural resources. Remote Sensing (RS) and Geographic Information System (GIS) have emerged as powerful tools for collecting, analyzing, and managing spatial data, enabling comprehensive and integrated decision-making processes. This review article uniquely focuses on Integrated Resource Management (IRM) and its role in sustainable development. It specifically examines the application of RS and GIS in IRM across various resource management domains. The article stands out for its comprehensive coverage of the benefits, challenges, and future directions of this integrated approach.
In recent years, the pathological diagnosis of glomerular diseases typically involves the study of glomerular his-to pathology by specialized pathologists, who analyze tissue sections stained with Periodic Acid-Schiff (PAS) to assess tissue and cellular abnormalities. In recent years, the rapid development of generative adversarial networks composed of generators and discriminators has led to further developments in image colorization tasks. In this paper, we present a generative adversarial network by Spectral Normalization colorization designed for color restoration of grayscale images depicting glomerular cell tissue elements. The network consists of two structures: the generator and the discriminator. The generator incorporates a U-shaped decoder and encoder network to extract feature information from input images, extract features from Lab color space images, and predict color distribution. The discriminator network is responsible for optimizing the generated colorized images by comparing them with real stained images. On the Human Biomolecular Atlas Program (HubMAP)—Hacking the Kidney FTU segmentation challenge dataset, we achieved a peak signal-to-noise ratio of 29.802 dB, along with high structural similarity results as other colorization methods. This colorization method offers an approach to add color to grayscale images of glomerular cell tissue units. It facilitates the observation of physiological information in pathological images by doctors and patients, enabling better pathological-assisted diagnosis of certain kidney diseases.
Copyright © by EnPress Publisher. All rights reserved.