To increase inter-region connectivity, the Indonesian government initiated infrastructure projects such as toll roads, airport, highways, as well as agriculture ones throughout the countries. One of the big projects in road infrastructure was the Cikampek–Palimanan (Cipali) toll road in West Java with a budget of more than USD1 billion which started to operate in July 2015. This paper is aimed to evaluate the impact of the toll road on accessibilities, trades, and investments in the region it traverses. To carry out the analysis, we used qualitative approach, difference-in-difference approach, and ANOVA, utilizing three kinds of data. The first data is collected from a survey of 331 small-medium enterprises (SMEs) in the logistics and the hotel and restaurant industries. The second one is bank loan data sourced from Bank Indonesia, while the third one is investment data from Investment Coordinating Board of Indonesia (BKPM).
After two years of its operation, Cipali toll road has increased accessibility, mobility, trade, and investment in the region it traverses. The travel time was reduced by 39%, while the cargo volume of the local businesses increased by 30% to 40%. These led to an improvement of wholesale trade volume in almost all regencies. However, SMEs in the hotel and restaurant industry along the traditional northern coastal highway in Subang, Indramayu, and Brebes experienced a decline due to the traffic shifting. Meanwhile, investments from national companies especially those of labor-intensive manufacturing industries flowed significantly especially to Subang and Majalengka, which reflected a “sorting effect”. However, investments from local and foreign businesses did not increase significantly yet after 2.5 years of toll operation.
To reap the benefit from the presence of Cipali toll road, the local governments should improve the ease of doing business to attract investments that boost employment in return. In addition, given a better accessibility from Greater Jakarta and a large number of potential visitors passing through the toll road, local businesses in the trade sector would benefit if they could promote the local attractions such as in tourism activities supported by the local government. The latter strategy should also be implemented by the local governments and local businesses in the northern coastal traditional route to minimize the negative impact of the toll road due to the traffic shifting. This strategy should be strengthened through increasing connectivity from the toll exits to local business areas and through increasing the ease of doing business.
This review discusses the significant progress made in the development of CNT/GO-based biosensors for disease biomarker detection. It highlights the specific applications of CNT/GO-based biosensors in the detection of various disease biomarkers, including cancer, cardiovascular diseases, infectious diseases, and neurodegenerative disorders. The superior performance of these biosensors, such as their high sensitivity, low detection limits, and real-time monitoring capabilities, makes them highly promising for early disease diagnosis. Moreover, the challenges and future directions in the field of CNT/GO-based biosensors are discussed, focusing on the need for standardization, scalability, and commercialization of these biosensing platforms. In conclusion, CNT/GO-based biosensors have demonstrated immense potential in the field of disease biomarker detection, offering a promising approach towards early diagnosis. Continued research and development in this area hold great promise for advancing personalized medicine and improving patient outcomes.
Oil spill clean-up is a long-standing challenge for researchers to prevent serious environmental pollution. A new kind of oil-absorbent based on silicon-containing polymers (e.g., poly(dimethylsiloxane) (PDMS)) with high absorption capacity and excellent reusability was prepared and used for oil-water separation. The PDMS-based oil absorbents have highly interconnected pores with swellable skeletons, combining the advantages of porous materials and gels. On the other hand, polymer/silica composites have been extensively studied as high-performance functional coatings since, as an organic/inorganic composite material, they are expected to combine polymer flexibility and ease of processing with mechanical properties. Polymer composites with increased impact resistance and tensile strength without decreasing the flexibility of the polymer matrix can be achieved by incorporating silica nanoparticles, nanosand, or sand particles into the polymeric matrices. Therefore, polymer/silica composites have attracted great interest in many industries. Some potential applications, including high-performance coatings, electronics and optical applications, membranes, sensors, materials for metal uptake, etc., were comprehensively reviewed. In the first part of the review, we will cover the recent progress of oil absorbents based on silicon-containing polymers (PDMS). In the later details of the review, we will discuss the recent developments of functional materials based on polymer/silica composites, sand, and nanosand systems.
The idea of a smart city has evolved in recent years from limiting the city’s physical growth to a comprehensive idea that includes physical, social, information, and knowledge infrastructure. As of right now, many studies indicate the potential advantages of smart cities in the fields of education, transportation, and entertainment to achieve more sustainability, efficiency, optimization, collaboration, and creativity. So, it is necessary to survey some technical knowledge and technology to establish the smart city and digitize its services. Traffic and transportation management, together with other subsystems, is one of the key components of creating a smart city. We specify this research by exploring digital twin (DT) technologies and 3D model information in the context of traffic management as well as the need to acquire them in the modern world. Despite the abundance of research in this field, the majority of them concentrate on the technical aspects of its design in diverse sectors. More details are required on the application of DTs in the creation of intelligent transportation systems. Results from the literature indicate that implementing the Internet of Things (IoT) to the scope of traffic addresses the traffic management issues in densely populated cities and somewhat affects the air pollution reduction caused by transportation systems. Leading countries are moving towards integrated systems and platforms using Building Information Modelling (BIM), IoT, and Spatial Data Infrastructure (SDI) to make cities smarter. There has been limited research on the application of digital twin technology in traffic control. One reason for this could be the complexity of the traffic system, which involves multiple variables and interactions between different components. Developing an accurate digital twin model for traffic control would require a significant amount of data collection and analysis, as well as advanced modeling techniques to account for the dynamic nature of traffic flow. We explore the requirements for the implementation of the digital twin in the traffic control industry and a proper architecture based on 6 main layers is investigated for the deployment of this system. In addition, an emphasis on the particular function of DT in simulating high traffic flow, keeping track of accidents, and choosing the optimal path for vehicles has been reviewed. Furthermore, incorporating user-generated content and volunteered geographic information (VGI), considering the idea of the human as a sensor, together with IoT can be a future direction to provide a more accurate and up-to-date representation of the physical environment, especially for traffic control, according to the literature review. The results show there are some limitations in digital twins for traffic control. The current digital twins are only a 3D representation of the real world. The difficulty of synchronizing real and virtual world information is another challenge. Eventually, in order to employ this technology as effectively as feasible in urban management, the researchers must address these drawbacks.
Nickel Oxide (NiO) nanoparticles (NPs), doped with manganese (Mn) and cobalt (Co) at concentrations up to 8%, were synthesized using the composite hydroxide method (CHM). X-ray diffraction (XRD) analysis confirmed the formation of a cubic NiO structure, with no additional peaks detected, indicating successful doping. The average crystallite size was determined to range from 15 to 17.8 nm, depending on the dopant concentration. Scanning electron microscopy (SEM) images revealed mostly spherical, agglomerated particles, likely due to magnetic interactions. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the incorporation of Mn and Co into the NiO lattice, consistent with the XRD results. The dielectric properties exhibited a high dielectric constant at low frequencies, which can be attributed to ion jump orientation and space charge effects. The imaginary part of the dielectric constant decreased with increasing frequency, as it became harder for electrons to align with the alternating field at higher frequencies. Both the real and imaginary dielectric constants showed behavior consistent with Koop’s theory, increasing at low frequencies and decreasing at higher frequencies. Dielectric loss was primarily attributed to dipole flipping and charge migration. AC conductivity increased with frequency, and exhibited higher conductivity at high frequencies due to small polaron hopping. These co-doped NPs show potential for applications in solid oxide fuel cells.
A significant percentage of any nation’s economy comes from the building industry, and its performance can impact overall economic growth and development. This paper aims to identify the similarities and differences between the construction sector (CS) of developed and developing economies in terms of size, growth, and contribution to the Gross domestic product (GDP) to understand the similarities and variances in the CS dynamics, trends, and challenges, and to inform policy decisions and investments through the literature review. The study also explores the factors that affect the CS’s performance in both types of economies, such as government policies, market conditions, and technological advancements. This paper concludes that the CS in developed economies is more established and technologically advanced, but there is still significant room for growth in developing economies. Moreover, a framework is proposed that could assist developing nations in opting for the construction economy. Further, the review emphasizes the significance of government policies and investments in infrastructure development to stimulate the CS’s growth and support overall economic development. The results of the study will assist in enhancing understanding of the CS’s potential in both developed and developing economies and support decision-making for policymakers, industry practitioners, and academicians.
Copyright © by EnPress Publisher. All rights reserved.