This study simultaneously examined the linkages among environmental dynamism, three dynamic capabilities, and the competitive advantages of retail businesses, which have not been identified before. Furthermore, this study fills the significant gaps in the literature and practical guidelines for retail development through improving retailer’s dynamic capabilities in response to environmental dynamism. The study used a quantitative approach by partial least squares SEM (PLS-SEM) to examine the hypotheses. Data were collected from 304 Vietnamese retail business managers. The results show that environmental dynamism plays a significant role in fostering the improvement of retailers’ dynamic capabilities. The findings also reveal positive linkages among the three dynamic capabilities before they significantly improve retailers’ competitive advantage. These are the valuable guidelines for retailers to nurture their dynamic capabilities, including service innovation capabilities, multi-channel integration, and brand orientation for sustaining their competitive advantages.
Introduction: In Central Europe, in Hungary, the state guarantees access to health care and basic health services partly through the Semmelweis Plan adopted in 2011. The primary objectives of the Semmelweis Plan include the optimisation and transformation of the health care system, starting with the integration of hospitals and the state control of previously municipally owned hospitals. The transformation of the health care system can have an impact on health services and thus on meeting the needs of the population. In addition to reducing health inequalities and costs, the relevant benefits include improving patients’ chances of recovery and increasing patient safety. The speciality under study is decubitus care. Our hypothesis is that integration will improve the chances of recovery for decubitus patients through access to smart dressings to promote patient safety. Objective: to investigate and demonstrate the effectiveness of integration in improving the chances of recovery for decubitus ulcer patients. Material and methods: The research compared two time periods in the municipality of Kalocsa, Bács-Kiskun County, Southern Hungary. We collected the number of decubitus patients arriving and leaving the hospital from the nursing records and compared the pre-integration period when decubitus patients were provided with conventional dressings (01.01.2006–2012.12.31) and the post-integration period, which entailed the introduction of smart dressings in decubitus care (01.01.2013–2012.12.31). The target population of the study was men and women aged 0–99 years who had developed some degree of decubitus. The sample size of the study was 4456. Independent samples t-test, Chow test and linear trend statistics were used to evaluate the results. Based on the empirical evidence, a SWOT analysis was conducted to further examine the effectiveness of integration. Results: The independent samples t-test model used was significant (for Phase I: t (166) = −16.872, p < 0.001; for Phase II: t (166) = −19.928, p < 0.001; for Phase III: t (166) = −19.928, p < 0.001; for Phase III: t (166) = −16.872, p < 0.001). For stage III: t (166) = −10.078, p < 0.001; for stage IV: t (166) = −10.078, p < 0.001; for stage III: t (166) = −10.078, p < 0.001). for stage III: t (166) = −14.066, p < 0.001). For the Chow test, the p-values were highly significant, indicating a structural break. Although the explanatory power of the regression models was variable (R-squared values ranged from 0.007 to 0.617), they generally supported the change in patient dynamics after integration. Both statistical analyses and SWOT analysis supported our hypothesis and showed that integration through access to smart dressings improves patients’ chances of recovery. Conclusions: Although only one segment of the evidence on the effectiveness of hospital integration was examined in this study, integration in the study area had a positive impact on the effective care of patients with decubitus ulcers, reduced inequalities in care and supported patient safety. In the context of the results obtained, these trends may reflect different systemic changes in patient management strategies in addition to efficient allocation of resources and quality of care.
Resisting the adoption of medical artificial intelligence (AI), it is suggested that this opposition can be overcome by combining AI awareness, AI risks, and responsibility displacement. Through effective integration of public AI dangers and displacement of responsibility, some of these major concerns can be alleviated. The United Kingdom’s National Health Service has adopted the use of chatbots to provide medical advice, whereas heart disease diagnoses can be made by IBM’s Watson. This has the ability to improve healthcare by increasing accuracy, efficiency, and patient outcomes. The resistance may be due to concerns about losing jobs, anxieties about misdiagnosis or medical mistakes, and the consciousness of AI systems drifting more responsibility away from medical professionals. There is hesitancy among healthcare professionals and the general public about the deployment of AI, despite the fact that healthcare is being revolutionised by AI, its uses are pervasive. Participants’ awareness of AI in healthcare, AI risk, resistance to AI, responsibility displacement and ethical considerations were gathered through questionnaires. Descriptive statistics, chi-square tests and correlation analyses were used to establish the relationship between resistance and medical AI. The study’s objective seeks to collect data on primary and public AI awareness, perceptions of risk and feelings of displacement that the professionals have regarding medical AI. Some of these concerns can be resolved when AI awareness is effectively integrated and patients, healthcare providers, as well as the general public are well informed about AI’s potential advantages. Trust is built when, AI related issues such as bias, transparency, and data privacy are critically addressed. Another objective is to develop a seamless integration of risk management, communication and awareness of AI. Lastly to assess how this comprehensive approach has affected hospital settings’ ambitions to use medical AI. Fusing AI awareness, risk management, and effective communication can be used as a comprehensive strategy to address and promote the application of medical AI in hospital settings. An argument made by Chen et al. is that providing training in AI can improve adoption intentions while lowering complexity through the awareness of AI.
The research aimed to: 1) analyze components and indicators of digital transformation leadership among school administrators, 2) assess their leadership needs, and 3) develop mechanism models to promote this leadership. A mixed-method approach was applied, involving three sample groups: 8 experts, 406 administrators, and 7 experts. Data collection tools included semi-structured interviews, leadership scales, needs assessments, and focus group discussions, with analysis performed through construct validity testing, needs assessment, and content analysis. The findings revealed: 1) The components and indicators of digital transformation leadership showed structural validity, as confirmed by the model's alignment with empirical data (Chi-Square = 82.3, df = 65, p = 0.072, CFI = 0.998, TLI = 0.997, RMR = 0.00965, RMSEA = 0.0256). 2) Among the leadership components, "innovative knowledge" ranked highest in need (PNImodified = 0.075), followed by "ideological influence" (0.066), "consideration of individuality" (0.055), "intellectual stimulation" (0.052), and "inspiration" (0.053). 3) Mechanism models for promoting leadership emphasized enhancing these five components to strengthen administrators' skills in applying technology, managing teaching and development plans, and fostering innovation. Administrators were encouraged to tailor strategies to individual needs, inspire personnel, and create a commitment to organizational change and development. These mechanisms aim to equip administrators to effectively lead transformations, motivate staff, and drive educational institutions to adapt and thrive in evolving environments.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
This paper aims to explore the relationship between corporate overinvestment and management incentives, focusing particularly on the influence of different ownership structures. Utilizing agency theory and ownership structure theory, this study constructs a theoretical framework and posits hypotheses on how management incentives might influence corporate overinvestment behaviors under different ownership structures. Listed companies from 2010 to 2020 were selected as the research sample, and the hypotheses were empirically tested using descriptive statistics, correlation analysis, and regression analysis. The findings suggest that a relatively concentrated ownership structure may encourage management to adopt more cautious investment strategies, thus reducing overinvestment behaviors; while under a dispersed ownership structure, the relationship between management incentives and overinvestment is more complex. This study provides new evidence on how management incentive mechanisms influence corporate decision-making in different ownership environments, offering significant theoretical and practical implications for improving internal control and incentive mechanisms.
Copyright © by EnPress Publisher. All rights reserved.