Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.
Rapid global warming and continuous climate change threaten the construction industry and human existence, especially in developing countries. Many developed countries are engaging their professional stakeholders on innovation and technology to mitigate climate change on humanity. Studies concerning inclusive efforts by developing countries’ stakeholders, including Nigeria, are scarce. Thus, this study investigates the construction industry’s practitioners’ preparedness to mitigate climate change through pre- and post-planning. Also, the study appraises climate change’s impact on construction activities and proffered measures to mitigate them. The research employed face-to-face data collection via a qualitative approach. The researchers engaged 33 knowledgeable participants. The study covered Abuja, Benin City, Owerri, and Lagos and achieved saturation at the 30th participant. The research employed a thematic approach to analyse the collected data. Findings reveal that Nigerian construction practitioners cannot cope with climate change impacts because of lax planning and inadequate technology to mitigate the issues. Also, the government’s attitude towards climate change has not helped matters. Also, the study suggested measures to mitigate the impact of climate change on construction activities in Nigeria. Therefore, as part of the research contributions, all-inclusive and integrated regulatory policies and programmes should be tailored toward mitigating climate change. This includes integrated stakeholder sensitisation, investment in infrastructure that supports anti-climate change, prioritising practices in the industry to achieve sustainable project transformation, and integration of climate change interventions into pre- and post-contract administration.
In the realm of modern education, the integration of technology has emerged as a powerful catalyst for transforming traditional classrooms into dynamic and engaging learning environments. This paper provides a concise overview of the multifaceted ways in which technology contributes to enhanced classroom engagement.
The main long-term goal of international communities is to achieve sustainable development. This issue is currently highly topical in most European Union (EU) countries due to the ongoing energy crisis. Building Integrated Photovoltaics (BIPV), which can be integrated into the building surface (roof or facade), thereby replacing conventional building materials, contributes significantly to achieving zero net energy buildings. However, fire safety is important when using BIPV as a structural system in buildings, and it is essential that the application of BIPV as building facades and roofs does not adversely affect the safety of the buildings, their occupants, or the responding firefighters. As multifunctional products, BIPV modules must meet fire safety requirements in the field of electrical engineering as well as in the construction industry. In terms of building regulations, the fire safety requirements of the BIPV must comply with national building regulations. Within this article, aspects and fire hazards associated with BIPV system installations will be defined, including proposals for installation and material requirements that can help meet fire safety.
Copyright © by EnPress Publisher. All rights reserved.