This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
The Cisadane Watershed is in a critical state, which has expanded residential areas upstream of Cisadane. Changes in land use and cover can impact a region’s hydrological characteristics. The Soil and Water Assessment Tool (SWAT) is a hydrological model that can simulate the hydrological characteristics of the watershed affected by land use. This study aims to evaluate the impact of land use change on the hydrological characteristics of the Cisadane watershed using SWAT under different land use scenarios. The models were calibrated and validated, and the results showed satisfactory agreement between observed and simulated streamflow. The main river channel is based on the results of the watershed delineation process, with the watershed boundary consisting of 85 sub-watersheds. The hydrological characteristics showed that the maximum flow rate (Q max) was 12.30 m3/s, and the minimum flow rate (Q min) was 5.50 m3/s. The study area’s distribution of future land use scenarios includes business as usual (BAU), protecting paddy fields (PPF), and protecting forest areas (PFA). The BAU scenario had the worst effect on hydrological responses due to the decreasing forests and paddy fields. The PFA scenario yielded the most favourable hydrological response, achieving a notable reduction from the baseline BAU in surface flow, lateral flow, and groundwater by 2%, 7%, and 2%, respectively. This was attributed to enhanced water infiltration, alongside increases in water yield and evapotranspiration of 3% and 15%, respectively. l Therefore, it is vital to maintain green vegetation and conserve land to support sustainable water availability.
This study explored the relationship between Chinese graduate students’ English language proficiency (ELP) and intercultural communicative competence (ICC). With the acceleration of globalization, an increasing number of Chinese students choose to study abroad, making it crucial to enhance their intercultural communication ability and language skills. However, China’s exam-oriented education system to some extent limits students’ holistic development and poses challenges for them in intercultural exchange. A quantitative survey method was employed, collecting questionnaire data from 249 Chinese English-major graduate students to analyze the relationship between their English ability and intercultural competence. The results indicated a certain positive correlation between English proficiency and intercultural competence but also pointed to the need for further unpacking of complexity and influencing factors. Future research with more robust methodology is still warranted to provide deeper insights into the linkage between the two constructs in the Chinese graduate context.
Given its insular geographic location, Taiwan inherently benefits from a natural advantage in developing its shipping industry, positioning it as a critical sector for the nation’s economic advancement. The shipping industry operates within a highly competitive maritime market, wherein ocean freight forwarders provide services on a global scale, thus classifying them within the international transportation and logistics industry. The global competition from logistics peers renders the services highly substitutable. This study breaks new ground by integrating the SERVQUAL scale with advanced methodologies such as the Analytic Hierarchy Process (AHP) and Decision-Making Trial and Evaluation Laboratory (DEMATEL) to assess and enhance service quality in the shipping industry. By segmenting the five dimensions of SERVQUAL, the study delineates 19 specific evaluation indicators. The expert questionnaires developed and analyzed through AHP and DEMATEL reveal a previously unidentified link between specific service quality dimensions and customer satisfaction. The findings from this analysis offer crucial insights into the critical success factors (CSFs) of service quality and their causal interrelationships, thereby establishing a model for service standards. By leveraging the identified CSFs and understanding the causal relationships among these key factors, ocean freight forwarders can enhance and optimize their value propositions and resources. This proactive approach is expected to significantly improve service quality, fortify core competitiveness, and elevate customer support and satisfaction levels, ultimately leading to an increased market share and ensuring sustainable business operations.
Background: Bitcoin mining, an energy-intensive process, requires significant amounts of electricity, which results in a particularly high carbon footprint from mining operations. In the Republic of Kazakhstan, where a substantial portion of electricity is generated from coal-fired power plants, the carbon footprint of mining operations is particularly high. This article examines the scale of energy consumption by mining farms, assesses their share in the country’s total electricity consumption, and analyzes the carbon footprint associated with bitcoin mining. A comparative analysis with other sectors of the economy, including transportation and industry is provided, along with possible measures to reduce the environmental impact of mining operations. Materials and methods: To assess the impact of bitcoin mining on the carbon footprint in Kazakhstan, electricity consumption from 2016 to 2023, provided by the Bureau of National Statistics of the Republic of Kazakhstan, was used. Data on electricity production from various types of power plants was also analyzed. The Life Cycle Assessment (LCA) methodology was used to analyze the environmental performance of energy systems. CO2 emissions were estimated based on emission factors for various energy sources. Results: The total electricity consumption in Kazakhstan increased from 74,502 GWh in 2016 to 115,067.6 GWh in 2023. The industrial sector’s electricity consumption remained relatively stable over this period. The consumption by mining farms amounted to 10,346 GWh in 2021. A comparative analysis of CO2 emissions showed that bitcoin mining has a higher carbon footprint compared to electricity generation from renewable sources, as well as oil refining and car manufacturing. Conclusions: Bitcoin mining has a significant negative impact on the environment of the Republic of Kazakhstan due to high electricity consumption and resulting carbon dioxide emissions. Measures are needed to transition to sustainable energy sources and improve energy efficiency to reduce the environmental footprint of cryptocurrency mining activities.
Copyright © by EnPress Publisher. All rights reserved.