In April 2023, the government of Changshu City, in Jiangsu Province, China, announced that it would officially use digital Chinese Yuan (E-CNY) as a method of wage payment to the government and state-owned enterprises staff starting in May. With the gradual improvement and application of E-CNY technologies, such as no electricity, no internet payment (offline payment), and the programmability of smart contracts, E-CNY will be officially used in China. CNN said China is on the verge of a cashless society. The advantages of E-CNY have a positive role in promoting the Chinese government’s implementation of the development goals of a low-carbon and sustainable economy. However, artificial intelligence (AI) trust concerns are the primary bottleneck in the current development based on intelligent algorithms and digital information technology. AI trust concerns are affecting the scope of use of E-CNY, and it may need to achieve effective scale-use, making it promote low-carbon and sustainable development. From the industry perspective, this article selects the housing rental enterprises, which are challenging to develop and energy-intensive, to analyze the theoretical approach and practical impact of E-CNY in promoting the low-carbon and sustainable development of China’s rental housing economy. Meanwhile, from the perspective of Chinese consumers, the impact of AI trust concerns on E-CNY in promoting low-carbon and sustainable development is analyzed in this article.
Urbanization plays a crucial role in facilitating the integration of population growth, industrial development, economic expansion, and energy consumption. In this paper, we aim to examine the relationships between CO2 emissions and various factors including economic growth, urbanization, financial development, and energy consumption within Pakistan’s building sector. The study utilizes annual data spanning from 1990 to 2020. To analyze the cointegration relationship between these variables, we employ the quantile autoregressive distributed lag error correction model (QARDL-ECM). The findings of this research provide evidence supporting the presence of an asymmetric and nonlinear long-term relationship between the variables under investigation. Based on these results, we suggest the implementation of tariffs on nonrenewable energy sources and the formulation of policies that promote sustainable energy practices. By doing so, policymakers and architects can effectively contribute to minimising environmental damage. Overall, this study offers valuable insights that can assist policymakers and architects in making informed decisions to mitigate environmental harm while fostering sustainable development.
With the progress of information technology, especially the widespread use of artificial intelligence technology, it has shown an important role in promoting economic and social development. Art and design in universities is a new discipline that combines modern technology with humanities and art. Only by emphasizing the development of science and technology, adapting to the requirements of the times, and closely integrating humanities and art with science and technology, can we gradually expand the educational channels for cultivating composite and innovative talents. Effectively organizing different types of scientific research activities, building a sound and comprehensive education system, plays an important role in adjusting teaching relationships, innovating teaching models, enhancing students' professional and comprehensive qualities, and improving their academic performance and employment competitiveness.
Abrupt changes in environmental temperature, wind and humidity can lead to great threats to human life safety. The Gansu marathon disaster of China highlights the importance of early warning of hypothermia from extremely low apparent temperature (AT). Here a deep convolutional neural network model together with a statistical downscaling framework is developed to forecast environmental factors for 1 to 12 h in advance to evaluate the effectiveness of deep learning for AT prediction at 1 km resolution. The experiments use data for temperature, wind speed and relative humidity in ERA-5 and the results show that the developed deep learning model can predict the upcoming extreme low temperature AT event in the Gansu marathon region several hours in advance with better accuracy than climatological and persistence forecasting methods. The hypothermia time estimated by the deep learning method with a heat loss model agrees well with the observed estimation at 3-hour lead. Therefore, the developed deep learning forecasting method is effective for short-term AT prediction and hypothermia warnings at local areas.
Copyright © by EnPress Publisher. All rights reserved.