A large number of publications devoted to a new class of materials - high-entropy alloys (HEA), is associated with their unique chemical, physical and mechanical properties both in cast materials and in various classes of coatings and refractory compounds. As a result of the research, the features of solid-soluble high-entropy alloys based on BCC and FCC phases have been revealed. These include the role of the most refractory element in the formation of the lattice parameter, the relationship of distortion with elastic deformation, and the contribution of the enthalpy of mixing to the strength and modulus of elasticity. This made it possible, on the basis of Hooke's law, to propose a formula for determining the hardness of the HEA based on the BCC and FCC phases. Based on the fact that with an increase in temperature in high-entropy alloys, the values of the modulus of elasticity, distortion and enthalpy of mixing will obey the same laws, a formula is proposed for determining the yield strength depending on the test temperature of solid-soluble HEA based on BCC and FCC phases. A formula based on the role of the most fusible metal in the alloy is proposed to calculate the melting point of solid-soluble materials.
One of the core problems in soil erosion research is the estimation of soil erosion. It is a feasible method and technical approach to estimate soil erosion in Loess Plateau region by using USLE model, GIS and RS technology and using DEM data, meteorological data and land-use type data. With the support of GIS and RS technology, the USLE factors and soil erosion in Loess Plateau region were estimated, and the soil erosion intensity was classified according to the Chinese soil erosion intensity classification standard. The results can provide reference for the development of soil erosion control measures in the Loess Plateau.
Synthesis of macro-mesoporous Titania (Titanium dioxide-TiO2) nanospheres was successfully achieved using a modified template-free methodology to incorporate macroporous channels into a mesoporous TiO2 framework to form mixed macro-mesoporous TiO2 spheres (MMPT), which were doped with carbon dots (C-dots) to form improved nanocomposites (C-dots@MMPT). Elemental composition, surface bonding and optical properties of these nanocomposites were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and ultraviolet-visible absorption spectroscopy (UV-VIS). Evaluation of photocatalytic activity for each (C-Dots@MMPT) sample was performed via degrading the Methylene Blue (MB) dye compared with bare samples (MMPT) under visible light irradiation using 300 Watt halogen lamp.
This study uses dynamic capability theory and a resource-based view to examine whether intellectual capital (human, relational, and structural capital) mediates entrepreneurial leadership and innovation success. Drawing on data from 422 senior-level employees working in Peruvian I.T. companies, the proposed relationships were analyzed using SmartPLS 4. Entrepreneurial leadership was found to foster employees’ innovative performance through the mediating role of human capital, relational capital, and structural capital. Practically, businesses often rely on innovation for survival and growth, so they should consider entrepreneurial leadership to create intellectual capital (human capital, relational capital and structural capital) for innovation performance. Businesses should provide entrepreneurial training that emphasizes role modeling intellectual capital and encourages employees to recognize and pursue entrepreneurial opportunities. With significantly limited research, the study contributes by investigating the interrelationship of entrepreneurial leadership, intellectual capital, and innovation performance. The study contributes to the Resource Based View and Dynamic Capability Theory by demonstrating how entrepreneurial leadership contributes to innovation performance through human capital, relational capital, and structural capital.
The effects of different storage temperatures (2, 4 and 8 ℃) and their corresponding optimal heat treatment conditions on the quality, physiological and biochemical indexes of Cucumber Fruits during storage were studied by using the quadratic regression orthogonal rotation combination design. The effects of different storage temperatures (2, 4 and 8 ℃) and their corresponding optimal heat treatment conditions on the chilling injury, hardness, weightlessness rate, polyphenol oxidase (PPO), catalase (CAT), peroxidase (POD), H2O2, super oxygen anion free radical (O2-), ASA and GSH were determined. The results showed that heat treatment could inhibit chilling injury, while heat treatment combined with 4 ℃ low temperature storage could effectively inhibit the decline of fruit hardness and weight loss rate, delay the increase of peroxidase (POD) and polyphenol oxidase (PPO) activities, inhibit the increase of H2O2 and superoxide anion free radical O2- and significantly inhibit the browning of cucumber, delay the decline of ascorbic acid and maintain the content of GSH, it was beneficial to adjust the balance of active oxygen system. The results showed that under the storage condition of 4 ℃, the hot water treatment condition of cucumber was 39.4 ℃ and 24.3 min, which could delay the senescence of cucumber fruit and better maintain the quality of cucumber fruit.
Copyright © by EnPress Publisher. All rights reserved.