In the realm of modern education, the integration of technology has emerged as a powerful catalyst for transforming traditional classrooms into dynamic and engaging learning environments. This paper provides a concise overview of the multifaceted ways in which technology contributes to enhanced classroom engagement.
Research on community resilience has been ongoing for decades. Several studies have been carried out on resilience in different groups and contexts. However, few address the relationship between community resilience and depopulated rural areas. This study aims to dig deeper into this, considering the concrete impact of population decline in Spain. We carried out a systematic review of the most relevant contributions. A search protocol was developed and used to consult ten databases. Different combinations of terms such as ‘community resilience’, ‘rural’, and ‘depopulation’, or related terms, were used. 22 scientific texts were analysed. We obtained a set of publications that demonstrate the heterogeneity of research methods, approaches and analytical processes applied to the study of this relationship. A mostly qualitative approach was observed, either as the main technique or complementary to documentary reviews. The results underscore the complex nature of rural depopulation and related constructs. It emphasizes the specific importance of community resilience in these territories in terms of social capital, endogenous resources, sustainability, economic dynamism, local responsibility and effective governance. The findings identify a scarce mention to social intervention professions, which should have a more important role due to their core values. In the studies reviewed, it appears as an emerging and scientifically relevant area to explore, both for investigation and intervention purposes. The strength of a multidisciplinary approach to addressing the phenomena appears in the discussion as a main potential line of research.
The silver nanoparticles (AgNPs) exhibit unique and tunable plasmonic properties. The size and shape of these particles can manipulate their localized surface plasmon resonance (LSPR) property and their response to the local environment. The LSPR property of nanoparticles is exploited by their optical, chemical, and biological sensing. This is an interdisciplinary area that involves chemistry, biology, and materials science. In this paper, a polymer system is used with the optimization technique of blending two polymers. The two polymer composites polystyrene/poly (4-vinylpyridine) (PS/P4VP) (50:50) and (75:25) were used as found suitable by their previous morphological studies. The results of 50, 95, and 50, 150 nm thicknesses of silver nanoparticles deposited on PS/P4VP (50:50) and (75:25) were explored to observe their optical sensitivity. The nature of the polymer composite embedded with silver nanoparticles affects the size of the nanoparticle and its distribution in the matrix. The polymer composites used are found to have a uniform distribution of nanoparticles of various sizes. The optical properties of Ag nanoparticles embedded in suitable polymer composites for the development of the latest plasmonic applications, owing to their unique properties, were explored. The sensing capability of a particular polymer composite is found to depend on the size of the nanoparticle embedded in it. The optimum result has been found for silver nanoparticles of 150 nm thickness deposited on PS/P4VP (75:25).
In this paper, a series of Li3V2(PO4)3/C composite nanofibers is prepared by a facile and environmentally friendly electrospinning method and calcined under different temperatures. The LVP nanofiber calcined under 900 ℃ exhibits the best electrochemical performance. The bicontinuous morphologies of LVP/CNF are the fibers shrunk and the LVP crystals simultaneously grown. At the range of 3.0–4.3 V, LVP/CNF obtained under 900 ℃ delivers the initial capacity of 135 mAh/g, close to the theoretical capacity of LVP. Even at high current density, the sample of LVP/CNF still presents good electrochemical performance.
The world has complex mega-cities and interdependent infrastructures. This complication in infrastructure relations makes it sensitive to disasters and failures. Cascading failure causes blackouts for the whole system of infrastructures during disasters and the lack of performance of the emergency management stakeholders is clear during a disaster due to the complexity of the system. This research aimed to develop a new concurrent engineering model following the total recovery effort. The objectives of this research were to identify the clustered intervention utilized in the field of resilience and developing a cross-functional intervention network to enhance the resilience of societies during a disaster. Content analysis was employed to classify and categorize the intervention in the main divisions and sub-divisions and the grouping of stakeholders. The transposing system was employed to develop an integrated model. The result of this research showed that the operations division achieved the highest weight of information interchange during the response to improve the resilience of the system. The committee of logistics and the committee of rescue and relief needed the widest bandwidth of information flow in the concurrent engineering (CE) model. The contributed CE model helped the stakeholders provide a resilient response system. The final model and the relative share value of exchanging information for each workgroup can speed up recovery actions. This research found that concurrent engineering (CE) is a viable concept to be implemented as a strategy for emergency management. The result of this research can help policymakers achieve a collaborative teamwork environment and to improve resilience factors during emergency circumstances for critical infrastructures.
Against the backdrop of anti-globalization rhetoric, this paper summarizes our joint book entitled Going Beyond Aid (Lin and Wang, 2017a) and discusses the prospects for development finance in the broad context of Belt and Road Initiative (BRI). Based on the New Structural Economics (Lin, 2010; 2011), here we focus on China’s demonstrated comparative advantages in infrastructure, e.g. in hydropower and high-speed railways (HSR). In addition, long-term orientation (LTO) and patient capital are latent comparative advantages that many Asian economies possess, and are critical for the Belt and Road Initiative. Only if these comparative advantages are utilized can these economies cooperate to potentially achieve win-win.
Copyright © by EnPress Publisher. All rights reserved.